首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper we report the effect of sulfatides on the rate constants of factor XII activation by kallikrein and its isolated light chain (the domain of kallikrein that contains the active site of the enzyme). In the absence of sulfatides, kallikrein and the light chain were equally effective in factor XII activation (k1 = 1.57 X 10(3) M-1 s-1 at pH 7.0). The pH optima were the same (pH 7.0) and the reaction was not affected by variation of the ionic strength. Sulfatides strongly increased the rate constants of factor XIIa formation. In the presence of sulfatides kallikrein was, however, much more active than its light chain. At 330 microM sulfatides, pH 7.0 and 100 mM NaCl the rate constants of factor XII activation were 5.34 X 10(6) M-1 s-1 and 4.17 X 10(4) M-1 s-1 for kallikrein and its light chain, respectively. The pH optimum of factor XII activation by kallikrein in the presence of sulfatides was shifted to pH 6.3, and the reaction became highly ionic-strength-dependent. The rate constant increased considerably at decreasing NaCl concentrations. The optimum pH for light-chain-dependent factor XII activation in the presence of sulfatides remained unaltered and the reaction was not affected by the ionic strength. Binding studies revealed that both kallikrein and factor XII bind to the sulfatide surface, whereas no binding of the light chain of kallikrein was detectable. The isolated heavy chain of kallikrein had the same binding properties as kallikrein, which indicates that the heavy-chain domain contains the functional information for kallikrein binding to sulfatides. Since the effects of pH and ionic strength on the rate constants of kallikrein-dependent factor XII activation in the presence of sulfatides correlated with effects on the binding of kallikrein, it is concluded that under these conditions surface-bound factor XII is activated by surface-bound kallikrein. Our data suggest that sulfatides stimulate kallikrein-dependent factor XII activation by two distinct mechanisms: by making factor XII more susceptible to peptide bond cleavage by kallikrein and by promoting the formation of the enzyme-substrate complex through surface binding of kallikrein and factor XII.  相似文献   

2.
We recently showed that single-chain zymogen factor VII is converted to two-chain factor VIIa in an autocatalytic manner following complex formation with either cell-surface or solution-phase relipidated tissue factor apoprotein (Nakagaki, T., Foster, D. C., Berkner, K. L., and Kisiel, W. (1991) Biochemistry 30, 10819-10824). We have now performed a detailed kinetic analysis of the autoactivation of human plasma factor VII in the presence of relipidated recombinant tissue factor apoprotein and calcium. Incubation of factor VII with equimolar amounts of relipidated tissue factor apoprotein resulted in the formation of factor VIIa amidolytic activity coincident with the conversion of factor VII to factor VIIa. The time course for the generation of factor VIIa amidolytic activity in this system was sigmoidal, characterized by an initial lag phase followed by a rapid linear phase until activation was complete. The duration of the lag phase was decreased by the addition of exogenous recombinant factor VIIa. Relipidated tissue factor apoprotein was essential for factor VII autoactivation. No factor VII activation was observed following complex formation between factor VII and a recombinant soluble tissue factor apoprotein construct consisting of the aminoterminal extracellular domain in the presence or absence of phospholipids. Kinetic analyses revealed that factor VII activation in the presence of relipidated tissue factor apoprotein can be defined by a second-order reaction mechanism in which factor VII is activated by factor VIIa with an apparent second-order rate constant of 7.2 x 10(3) M-1 S-1. Benzamidine inhibited factor VII autoactivation with an apparent Ki of 1.8 mM, which is identical to the apparent Ki for the inhibition of factor VIIa amidolytic activity by this active site competitive inhibitor. Our data are consistent with a factor VII autoactivation mechanism in which trace amounts of factor VIIa rapidly activate tissue factor-bound factor VII by limited proteolysis.  相似文献   

3.
Inositolphospholipid-accelerated activation of prekallikrein by alpha-factor XIIa was determined by measuring the appearance of kallikrein amidolytic activity towards the chromogenic substrate, D-prolyl-phenylalanyl-arginyl p-nitroanilide (S-2302). The activation reaction did not exhibit normal Michaelis-Menten kinetics. The Hill coefficient was found to be 1.6 indicating that the activation followed an allosteric reaction mechanism. The temperature dependence of the reaction showed a thermal transition at 30 degrees C, which in addition to the allosteric reaction mechanism is indicative of a conformational change of prekallikrein following binding to the inositolphospholipid. The reaction exhibited pH optimum at pH 7.2 and ionic strength optimum at 50 mM NaCl. At optimal conditions the apparent KA value and the kcat/KA value for factor XIIa on prekallikrein were calculated to be 73 nM and 9.3 x 10(6) s-1 M-1, respectively. Kinetic constants could not be calculated at salt concentrations higher than the optimal concentrations, as Lineweaver-Burk plots were curvilinear in agreement with the Hill coefficient greater than unity. The activation was inhibited competitively by beta 2-glycoprotein I with a Ki value of 77 nM as determined by the Dixon plot.  相似文献   

4.
Investigations determined that the cell matrix-associated prekallikrein (PK) activator is prolylcarboxypeptidase. PK activation on human umbilical vein endothelial cell (HUVEC) matrix is inhibited by antipain (IC(50)=50 microM) but not anti-factor XIIa antibody, 3 mM benzamidine, 5 mM iodoacetic acid or iodoacetamide, or 3 mM N-ethylmaleimide. Corn trypsin inhibitor (IC(50)=100 nM) or Fmoc-aminoacylpyrrolidine-2-nitrile (IC(50)=100 microM) blocks matrix-associated PK activation. Angiotensin II (IC(50)=100 microM) or bradykinin (IC(50)=3 mM), but not angiotensin 1-7 or bradykinin 1-5, inhibits matrix-associated PK activation. ECV304 cell matrix PK activator also is blocked by 100 microM angiotensin II, 1 microM corn trypsin inhibitor, and 50 microM antipain, but not angiotensin 1-7. 1 mM angiotensin II or 300 microM Fmoc-aminoacylpyrrolidine-2-nitrile indirectly blocks plasminogen activation by inhibiting kallikrein formation for single chain urokinase activation. On immunoblot, prolylcarboxypeptidase antigen is associated with HUVEC matrix. These studies indicate that prolylcarboxypeptidase is the matrix PK activator.  相似文献   

5.
The Hageman factor-dependent system in the vascular permeability reaction   总被引:1,自引:0,他引:1  
The mechanism by which the Hageman factor-dependent system induces vascular permeability has been analyzed. The Mr-28,000 active fragment of guinea pig Hageman factor (beta-HFa), injected intradermally, induces an increase in local vascular permeability. Inhibition of vascular permeability resulted from pretreatment of the beta-HFa with immunopurified anti-Hageman factor F(ab')2 antibody at concentrations of 10(-6)-10(-7) M as well as by incubation with corn and pumpkin seed inhibitors of beta-HFa. To determine whether prekallikrein and kallikrein participated in the permeability induced by beta-HFa, circulating prekallikrein was depleted by intra-arterial injections of anti-prekallikrein F(ab')2 antibody. This resulted in about 80% diminution of the vascular permeability response to beta-HFa, without affecting the permeability reaction to bradykinin. Soybean trypsin inhibitor (10(-6) M), injected at the same cutaneous site as the beta-HFa, inhibited the vascular permeability response to beta-HFa by more than 90%. This concentration of soybean inhibitor blocked more than 90% of the activity of guinea pig plasma kallikrein, but did not inhibit the amidolytic capacity of beta-HFa. The permeability activity of beta-HFa (but not its amidolytic activity) was augmented 10-fold by simultaneous injection of a synthetic kinin potentiator, SQ 20,881 (Glu-Tyr-Pro-Arg-Pro-Gln-Ile-Pro-Pro-OH), and was almost completely inhibited by the simultaneous injection of a kinin-destroying enzyme, carboxypeptidase B. These results support the hypothesis that the greatest proportion of vascular permeability induced by beta-HFa is produced by the activation of prekallikrein followed by the release of kinin in the cutaneous tissue. These data offer the first in vivo evidence that the Hageman factor-dependent system by itself can induce inflammatory changes.  相似文献   

6.
The binding of human factor XII and prekallikrein to vesicles of various compositions and the relationship to activation of factor XII were studied. Factor XII, factor XIIa, and the 40-kilodalton binding fragment of factor XII bound tightly to all of the negatively charged lipids investigated, including sulfatide, phosphatidylserine, and phosphatidylethanolamine, but not to the neutral lipid phosphatidylcholine. Binding could be reversed by high salt, and the dissociation constant for binding to sulfatide vesicles was in the nanomolar range at an ionic strength of 0.15 M. Prekallikrein did not bind significantly to either sulfatide or phosphatidylethanolamine vesicles under the conditions used. Stopped-flow studies showed that the association rate for the factor XII-sulfatide interaction was biphasic and very rapid; the faster rate corresponded to about 30% collisional efficiency. The kinetics of activation of factor XII was investigated and was in agreement with previous studies; sulfatide promoted activation but phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine did not. Autoactivation rates correlated closely with the packing density of factor XII and factor XIIa on the vesicle surface. In contrast, kallikrein activation of factor XII correlated with the amount of sulfatide-bound factor XII and was relatively insensitive to the density of factor XII on the vesicle surface. When the concentration of factor XII was reduced to only several molecules per vesicle, the autoactivation rate dropped very low whereas kallikrein activation held relatively constant. These results indicated that the autoactivation and the kallikrein activation of factor XII were dependent on different properties of the surface component.  相似文献   

7.
Kinetics of activation and autoactivation of human factor XII   总被引:3,自引:0,他引:3  
The kinetics of the enzymic reactions that participate in the contact activation system of human plasma were examined. These reactions are potentiated by dextran sulfate, a negatively charged solute that mimics many of the effects of glass or kaolin on this system. The reactions of reciprocal activation, consisting of activation of factor XII by kallikrein and of prekallikrein by activated factor XII, follow Michaelis-Menten kinetics; values of kcat and Km for each of these reactions were determined in the presence of dextran sulfate and in its absence. In the presence of dextran sulfate, the catalytic efficiency for factor XII activation was increased 11 000-fold, and that for prekallikrein was increased 70-fold. Autoactivation of factor XII in the presence of dextran sulfate also follows Michaelis-Menten kinetics with kcat = 0.033 s-1 and Km = 7.5 microM. This finding supports the concept that autoactivation is an enzymic process, initiated by traces of activated factor XII which are invariably present in factor XII preparations. At prekallikrein and factor XII levels equal to those in plasma, reciprocal activation is approximately 2000-fold more rapid than autoactivation. Thus, reciprocal activation is the predominant mode of factor XII activation in normal plasma.  相似文献   

8.
The activation of Factor XII and prekallikrein by polysaccharide sulfates and sulfatides in the presence of high-molecular-weight (HMW) kininogen was studied, and compared with the kaolin-mediated activation reaction. Among a variety of artificially-sulfated polysaccharides and native polysaccharide sulfates, amylose sulfate (M.W.= 380,000 and sulfur content, 19.1%) and sulfatide were found to have the most efficient ability to trigger the activation of prekallikrein by Factor XII. The effects of these two kinds of negatively-charged surfaces on the following three activation reactions were compared; the activation of prekallikrein by Factor XII (reaction 1), the activation of Factor XII by kallikrein (reaction 2) and the activation of prekallikrein by Factor XIIa (reaction 3). All three reactions mediated by the selected surfaces were strongly accelerated by HMW kininogen and its derivatives, kinin-free protein and fragment 1.2-linked light chain, like the kaolin-mediated activation. However, this accelerating effect of HMW kininogen on the amylose sulfate- and sulfatide-mediated activations (reaction 1) was diminished after treatment with fluorescein iso-thiocyanate, whereas the effect on the kaolin-mediated activation was not influenced by fluorescein-labeling. In addition, reaction 2 mediated by amylose sulfate and sulfatide was extremely slow even in the presence of HMW kininogen, and the results also differed from those with kaolin. The sulfatide-mediated activation of reaction 1 was not inhibited by fragment 1.2 (His-rich fragment), which is released from HMW kininogen by the action of kallikrein, and is known to be a potent inhibitor of the kaolin-dependent activation. These results indicate that the mechanisms responsible for surface activation triggered by soluble amylose sulfate, sulfatide micelles and kaolin differ from each other as regards the molecular interaction with the contact factors.  相似文献   

9.
In a system consisting of purified proteins inositol-phospholipid-accelerated activation of prekallikrein by alpha-factor XIIa was determined by measuring the appearance of kallikrein amidolytic activity towards the chromogenic substrate, H-D-Pro-Phe-Arg-NH-PhNO2 (PhNO2, 4-nitrophenyl). The activation reaction was ionic-strength dependent. In the absence of high-Mr kininogen optimal activity was recorded at I = 50 mM. Searching for conditions, which could change this optimum towards physiological values, high-Mr kininogen was added. This resulted in an inhibition of the activity, with no change in ionic strength optimum. If, however, Zn2+ were added concomitant with high-Mr kininogen, the inhibition was abolished and optimal activity recorded at physiological ionic strength. The optimal Zn2+ concentration was found to be 0.1 mM. Kinetic analysis of the reaction demonstrated that the kcat/Km was 1.2 x 10(5) M-1 s-1 in the absence and 1.1 x 10(6) M-1 s-1 in the presence of Zn2+. Zn2+ were also required for inositol-phospholipid-accelerated initiation of the contact activation in whole plasma.  相似文献   

10.
The kaolin-mediated reciprocal activation of bovine factor XII and prekallikrein was divided into the following two reactions: the activation of factor XII by plasma kallikrein (reaction 1) and the activation of prekallikrein by factor XIIa (reaction 2). The effects of high-Mr kininogen and kaolin surface on the kinetics of these activation reactions were studied. High-Mr kininogen markedly enhanced the rate of reactions 1 and 2 in the presence of kaolin, and the enhancements were highly dependent on the concentrations of the protein cofactor and amount of kaolin surface. For the activation of factor XII by plasma kallikrein (reaction 1), high-Mr kininogen was required when a low concentration of factor XII and kaolin was used. The molar ratio of the protein cofactor to factor XII for optimal activation was found to be approximately 1:1. The apparent Km value and the kcat/Km value for plasma kallikrein on factor XII were calculated to be 4 nM and 5.2 X 10(7) s-1 X M-1, respectively. The activation of prekallikrein by factor XIIa, (reaction 2) proceeded even in the absence of high-Mr kininogen and kaolin. The addition of the protein cofactor and surface to the reaction mixture remarkably accelerated the reaction, and the apparent Km value for factor XIIa on prekallikrein was reduced from 1 microM to 40 nM. Moreover, the kcat/Km value was altered from 7.3 X 10(4) to 1.1 X 10(6) s-1 X M-1). These results suggest that high-Mr kininogen accelerates the surface-mediated activation of factor XII and prekallikrein by enhancing the susceptibility of factor XII to plasma kallikrein, on the one hand, and the affinity of factor XIIa for prekallikrein, on the other hand. Kaolin may play an important role in the concentration and organization of these components on the negatively charged surface.  相似文献   

11.
JR Dahlen  DC Foster  W Kisiel 《Biochemistry》1997,36(48):14874-14882
In a previous report, the cDNA for human proteinase inhibitor 8 (PI8) was first identified, isolated, and subcloned into a mammalian expression vector and expressed in baby hamster kidney cells. Initial studies indicated that PI8 was able to inhibit the amidolytic activity of trypsin and form an SDS-stable approximately 67-kDa complex with human thrombin [Sprecher, C. A., et al. (1995) J. Biol Chem. 270, 29854-29861]. In the present study, we have expressed recombinant PI8 in the methylotropic yeast Pichia pastoris, purified the inhibitor to homogeneity, and investigated its ability to inhibit a variety of proteinases. PI8 inhibited the amidolytic activities of porcine trypsin, human thrombin, human coagulation factor Xa, and the Bacillus subtilis dibasic endoproteinase subtilisin A through different mechanisms but failed to inhibit the Staphylococcus aureus endoproteinase Glu-C. PI8 inhibited trypsin in a purely competitive manner, with an equilibrium inhibition constant (Ki) of less than 3.8 nM. The interaction between PI8 and thrombin occurred with a second-order association rate constant (kassoc) of 1.0 x 10(5) M-1 s-1 and a Ki of 350 pM. A slow-binding kinetics approach was used to determine the kinetic constants for the interactions of PI8 with factor Xa and subtilisin A. PI8 inhibited factor Xa via a two-step mechanism with a kassoc of 7.5 x 10(4) M-1 s-1 and an overall Ki of 272 pM. PI8 was a potent inhibitor of subtilisin A via a single-step mechanism with a kassoc of 1.16 x 10(6) M-1 s-1 and an overall Ki of 8.4 pM. The interaction between PI8 and subtilisin A may be of physiological significance, since subtilisin A is an evolutionary precursor to the intracellular mammalian dibasic processing endoproteinases.  相似文献   

12.
Human plasma prekallikrein, precursor of the bradykinin-generating enzyme, was activated in a purified system under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase which is a tissue-destructive metalloproteinase. Compared with that, Pseudomonas aeruginosa alkaline proteinase poorly activated it with a rate as low as less than one-twentieth of that of elastase. The activation by elastase was blocked with a specific inhibitor of elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2 (10 microM). Generation of kallikrein-like amidolytic activity was also observed in plasma deficient in Hageman factor by treatment with elastase, but was not in plasma deficient in prekallikrein. The kallikrein-like activity generated in Hageman factor deficient plasma as well as the generation process itself was indeed inhibited by anti-human prekallikrein goat antibody. These results suggest that the pathological activation of the kallikrein-kinin system might occur under certain clinical conditions in pseudomonal infections.  相似文献   

13.
It was shown that the activated Hageman factor and its active fragment convert a greater amount of prekallikrein into kallikrein than is observed under the effects of trypsin and kallikrein. The latter two enzymes convert from 30 to 60% of the Hageman factor-activated prekallikrein and its active fragment. A possible existence of two prekallikrein forms is discussed. A mechanism of interaction between individual components of the kininogenase system and their activators is discussed.  相似文献   

14.
The concentration of bradykinin in human plasma depends on its relative rates of formation and destruction. Bradykinin is destroyed by two enzymes: a plasma carboxypeptidase (anaphylatoxin inactivator) removes the COOH-terminal arginine to yield an inactive octapeptide, and a dipeptidase (identical to the angiotensin-converting enzyme) removes the COOH-terminal Phe-Arg to yield a fragment of seven amino acids that is further fragmented to an end product of five amino acids. Formation of bradykinin is initiated on binding of Hageman factor (HF) to certain negatively charged surfaces on which it autoactivates by an autodigestion mechanism. Initiation appears to depend on a trace of intrinsic activity present in HF that is at most 1/4000 that of activated HF (HFa); alternatively traces of circulating HFa could subserve the same function. HFa then converts coagulation factor XI to activated factor XI (XIa) and prekallikrein to kallikrein. Kallikrein then digests high-molecular-weight kininogen (HMW-kininogen) to form bradykinin. Prekallikrein and factor XI circulate bound to HMW-kininogen and surface binding of these complexes is mediated via this kininogen. In the absence of HMW-kininogen, activation of prekallikrein and factor XI is much diminished; thus HMW-kininogen has a cofactor function in kinin formation and coagulation. Once a trace of kallikrein is generated, a positive feedback reaction occurs in which kallikrein rapidly activates HF. This is much faster than the HF autoactivation rate; thus most HFa is formed by a kallikrein-dependent mechanism. HMW-kininogen is also therefore a cofactor for HF activation, but its effect on HF activation is indirect because it occurs via kallikrein formation. HFa can be further digested by kallikrein to form an active fragment (HFf), which is not surface bound and acts in the fluid phase. The activity of HFf on factor XI is minimal, but it is a potent prekallikrein activator and can therefore perpetuate fluid phase bradykinin formation until it is inactivated by the C1 inhibitor. In the absence of C1 inhibitor (hereditary angioedema) HFf may also interact with C1 and activate it enzymatically. The resultant augmented bradykinin formation and complement activation may account for the pathogenesis of the swelling characteristic of hereditary angioedema and the serologic changes observed during acute attacks.  相似文献   

15.
J D Shore  D E Day  P E Bock  S T Olson 《Biochemistry》1987,26(8):2250-2258
The effect of divalent metal ions on the rate of dextran sulfate dependent autocatalytic activation of human blood coagulation factor XII was studied at pH 7.4 and 25 degrees C. Zn2+ and Cu2+, but not Co2+, increased the rate of factor XII activation induced by dextran sulfate with optimum effects at approximately 5 and 1 microM, respectively, while Ca2+ acceleration required much higher concentrations (millimolar). Further investigation of the effect of Zn2+ on factor XII activation demonstrated a complete dependence on the presence of dextran sulfate, lack of inhibition by soybean trypsin inhibitor, the appearance of alpha-XIIa as the primary reaction product, and reaction kinetics characteristic of an autocatalytic process. These results were consistent with Zn2+ affecting only the rate of surface-mediated factor XII autoactivation. The initial turnover velocity of dextran sulfate induced factor XII autoactivation increased linearly with factor XII concentration in the absence of Zn2+ up to 0.9 microM factor XII but showed saturation behavior over this same concentration range in the presence of 5 microM Zn2+, indicating that Zn2+ increased the reaction rate primarily by lowering the apparent Km. Comparison of the kinetics of autoactivation at mu = 0.15 and 0.24 revealed that the enhancement in the apparent kcat/Km brought about by Zn2+ increased from 19-fold to 520-fold, respectively, due to a differential dependence of the Zn2+-stimulated and unstimulated reactions on ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effect of tryptase from human mast cells on human prekallikrein   总被引:1,自引:0,他引:1  
Tryptase, the dominant protease in human mast cells, was examined for its effect on human prekallikrein. Tryptase in the presence and absence of heparin failed to activate prekallikrein as shown in a spectrophotometric assay for kallikrein employing benzoy 1-pro-phe-arg-p-nitroanilide. Treated prekallikrein was converted to active kallikrein by bovine trypsin. Prekallikrein cleavage products were analyzed by electrophoresis in polyacrylamide gels under denaturing conditions (+/- reduction). Tryptase caused no apparent cleavage under conditions where trypsin caused complete cleavage. Thus, tryptase, which has previously been shown to lack kallikrein and kininase activities, neither activates nor destroys prekallikrein.  相似文献   

17.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

18.
X-ray diffraction studies of human thrombin revealed that compared with trypsin, two insertions (B and C) potentially limit access to the active site groove. When amino acids Glu146, Thr147, and Trp148, adjacent to the C-insertion (autolysis loop), are deleted the resulting thrombin (des-ETW) has dramatically altered interaction with serine protease inhibitors. Whereas des-ETW resists antithrombin III inactivation with a rate constant (Kon) approximately 350-fold slower than for thrombin, des-ETW is remarkably sensitive to the Kunitz inhibitors, with inhibition constants (Ki) decreased from 2.6 microM to 34 nM for the soybean trypsin inhibitor and from 52 microM to 1.8 microM for the bovine pancreatic trypsin inhibitor. The affinity for hirudin (Ki = 5.6 pM) is weakened at least 30-fold compared with recombinant thrombin. The mutation affects the charge stabilizing system and the primary binding pocket of thrombin as depicted by a decrease in Kon for diisopropylfluorophosphate (9.5-fold) and for N alpha-p-tosyl-L-lysine-chloromethyl ketone (51-fold) and a 39-fold increase in the Ki for benzamidine. With peptidyl p-nitroanilide substrates, the des-ETW deletion results in changes in the Michaelis (Km) and/or catalytic (kcat) constants, worsened as much as 85-fold (Km) or 100-fold (kcat). The specific clotting activity of des-ETW is less than 5% that of thrombin and the kcat/Km for protein C activation in the absence of cofactor less than 2%. Thrombomodulin binds to des-ETW with a dissociation constant of approximately 2.5 nM and partially restores its ability to activate protein C since, in the presence of the cofactor, kcat/Km rises to 6.5% that of thrombin. This study suggests that the ETW motif of thrombin prevents (directly or indirectly) its interaction with the two Kunitz inhibitors and is not essential for the thrombomodulin-mediated enhancement of protein C activation.  相似文献   

19.
Autoactivation of human recombinant coagulation factor VII   总被引:3,自引:0,他引:3  
Single-chain human recombinant factor VII produced by transfected baby hamster kidney cells was purified to homogeneity in the presence of benzamidine. The amidolytic activity of single-chain recombinant factor VII with a peptidylnitroanilide substrate, methoxycarbonyl-D-cyclohexanylglycyl-L-arginine-p-nitroanilide, was less than 1% of that obtained with factor VIIa. Purified single-chain recombinant factor VII spontaneously activated in the absence of inhibitor. The activation reaction was enhanced by at least 2 orders of magnitude in the presence of a positively charged surface, provided either as an anion-exchange matrix or as poly(D-lysine). The progress curve for factor VIIa generation was sigmoidal. Benzamidine inhibits recombinant factor VIIa activity and factor VII activation with identical inhibition constants (Ki) of 11 mM. In contrast, benzamidine inhibition of bovine factor Xa and bovine factor IIa was observed at Ki values equal to 0.3 and 0.5 mM, respectively. Bovine factors Xa and IIa are known activators of factor VII and the most likely contaminants of our recombinant factor VII preparations. Single-chain recombinant factor VII purified from cells cultured in the absence of bovine serum activated at the same rate as factor VII from cells cultured in the presence of bovine serum. This also excluded the possibility that the activation reaction was caused by contaminating bovine proteases. On the basis of these observations, we propose that factor VII is autoactivated in vitro in the presence of a positively charged surface.  相似文献   

20.
A prokallikrein was purified 1600-fold from rat pancreatic tissue in an overall yield of 40% by a simple four-stage procedure. The final and crucial step was immunoaffinity chromotography utilizing antibody raised to a very small amount of prokallikrein. Both the pure zymogen and the active kallikrein generated from it by trypsin activation are single chain species with Mr values of 38 400±300 and 35 500±400, respectively. Valine is the N-terminal amino acid residue of prokallikrein. The zymogen Was comparatively stable both to autoactivation and denaturation with respect to temperature and pH. The kallikrein produced by trypsin activation of the zymogen was similar in some of its catalytic properties to the kallikrein purified from autolyzed rat pancreas but the two species differed in their susceptibility to substrate activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号