首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified a patient suffering from late infantile metachromatic leukodystrophy who genetically seemed to be homozygous for the mutations signifying the arylsulfatase A pseudodeficiency allele. Homozygosity for the pseudodeficiency allele is associated with low arylsulfatase A activity but does not cause a disease. Analysis of the arylsulfatase A gene in this patient revealed a C----T transition in exon 2, causing a Ser 96----Phe substitution in addition to the sequence alterations causing arylsulfatase A pseudodeficiency. Although this mutation was found only in 1 of 78 metachromatic leukodystrophy patients tested, five more patients were identified who seemed hetero- or homozygous for the pseudodeficiency allele. The existence of nonfunctional arylsulfatase A alleles derived from the pseudodeficiency allele calls for caution when the diagnosis of arylsulfatase A pseudodeficiency is based solely on the identification of the mutations characterizing the pseudodeficiency allele.  相似文献   

2.
Metachromatic leukodystrophy (MLD)--lysosomal storage disease caused arylsulfatase A (ARSA) deficiency. Biochemical diagnostic of MLD is complicated by arylsulfatase A pseudodeficiency. There is possibility of mistake in MLD diagnoses in case of pseudodeficiency ARSA and non-MLD neurological disease combination. We suggest the new modification of arylsulfatase A activity detection method which allows to identify the arylsulfatase A pseudodeficiency without molecular genetic methods.  相似文献   

3.
4.
Metachromatic leukodystrophy (MLD) is an inherited storage disease caused by deficiency of arylsulfatase A (ARSA). Molecular analysis of the major mutations in the ARSA gene was performed in 10 Ukrainian patients (from 9 families) with MLD. According to the age of onset, late infantile MLD was identified in 3 patients, juvenile MLD in 5 patients, and adult MLD in 2 patients (sibs), respectively. The ARSA activity in the patients was 2-26 nmol/h/mg protein (the normal activity has been established in our laboratory as 111.9 +/- 7.1 nmol/h/mg protein). No correlation between enzyme activity and a clinical course of disease was revealed. The IVS2 + 1 mutation was found at 2 of 20 alleles (in a patient with late infantile form) and the P426L mutation was found at 2 of 20 alleles (in two patients with juvenile form). Thus, the total frequency of these two major mutations in the ARSA gene is 20% in Ukrainian MLD patients.  相似文献   

5.
A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features.  相似文献   

6.
Fragments of the arylsulfatase A (ARSA) gene from a patient with juvenile-onset metachromatic leukodystrophy (MLD) were amplified by PCR and ligated into MP13 cloning vectors. Clones hybridizing with cDNA for human ARSA were selected, examined for appropriate size inserts, and used to prepare single-stranded phage DNA. Examination of the entire coding and most of the intronic sequence revealed two putative disease-related mutations. One, a point mutation in exon 3, resulted in the substitution of isoleucine by serine. Introduction of this alteration into the normal ARSA cDNA sequence resulted in a substantial decrease in ARSA activity on transient expression in cultured baby hamster kidney cells. About 5% of the control expression was observed, suggesting a small residual activity in the mutated ARSA. The second mutation, a G-to-A transition, occurred in the other allele and resulted in an altered splice-recognition sequence between exon 7 and the following intron. The mutation also resulted in the loss of a restriction site. Apparently normal levels of mRNA were generated from this allele, but no ARSA activity or immuno-cross-reactive material could be detected. A collection of DNA samples from known or suspected MLD patients, members of their families, and normal controls was screened for these mutations. Four additional individuals carrying each of the mutations were found among the nearly 100 MLD patients in the sample. Gene segregation in the original patient's family was consistent with available clinical and biochemical data. No individuals homozygous for either of these two mutations were identified. However, combinations with other MLD mutations suggest that the point mutation in exon 3 does result in some residual enzyme activity and is associated with late-onset forms of the disease. The splice-site mutation following exon 7 produces late-infantile MLD when combined with other enzyme-null mutations, implying that it is completely silent enzymatically.  相似文献   

7.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. This leads to the accumulation of 3-O-sulfogalactosylceramide, which results in severe demyelination. Here we describe a novel non-sense mutation W124ter and two disease-causing missense mutations E382Q and C500F in arylsulfatase A gene. Another so far unknown allele harbors three sequence alterations: two polymorphisms (N350S, R496H) and a missense mutation (R288H). The R288H substitution and the N350S polymorphism have previously been found on one allele together with a polymorphism in a polyadenylation signal characteristic for the arylsulfatase A pseudodeficiency allele. The R496H has been shown to occur on another allele. The presence of the R288H, N350S, and R496H substitution on one allele in the absence of the polyadenylation site polymorphism shows that this allele has probably arisen by recombination between the nucleotides of codon 350 and 496.  相似文献   

8.
We have evaluated the feasibility of using PCR-based mutation screening for non-Jewish enzyme-defined carriers identified through Tay-Sachs disease-prevention programs. Although Tay-Sachs mutations are rare in the general population, non-Jewish individuals may be screened as spouses of Jewish carriers or as relatives of probands. In order to define a panel of alleles that might account for the majority of mutations in non-Jewish carriers, we investigated 26 independent alleles from 20 obligate carriers and 3 affected individuals. Eighteen alleles were represented by 12 previously identified mutations, 7 that were newly identified, and 1 that remains unidentified. We then investigated 46 enzyme-defined carrier alleles: 19 were pseudodeficiency alleles, and five mutations accounted for 15 other alleles. An eighth new mutation was detected among enzyme-defined carriers. Eleven alleles remain unidentified, despite the testing for 23 alleles. Some may represent false positives for the enzyme test. Our results indicate that predominant mutations, other than the two pseudodeficiency alleles (739C-->T and 745C-->T) and one disease allele (IVS9+1G-->A), do not occur in the general population. This suggests that it is not possible to define a collection of mutations that could identify an overwhelming majority of the alleles in non-Jews who may require Tay-Sachs carrier screening. We conclude that determination of carrier status by DNA analysis alone is inefficient because of the large proportion of rare alleles. Notwithstanding the possibility of false positives inherent to enzyme screening, this method remains an essential component of carrier screening in non-Jews. DNA screening can be best used as an adjunct to enzyme testing to exclude known HEXA pseudodeficiency alleles, the IVS9+1G-->A disease allele, and other mutations relevant to the subject's genetic heritage.  相似文献   

9.
In healthy individuals, fumarylacetoacetase (FAH) activities close to the range found in hereditary tyrosinemia type 1 (HT1) patients indicated the existence of a "pseudodeficiency" allele. In an individual homozygous for pseudodeficiency of FAH and in three HT1 families also carrying the pseudodeficiency allele, western blotting of fibroblast extracts showed that the pseudodeficiency allele gave very little immunoreactive FAH protein, whereas northern analysis revealed a normal amount of FAH mRNA. Sequencing revealed an identical mutation, C1021-->T (Arg341Trp), in all the pseudodeficiency alleles. Site-directed mutagenesis and expression in a rabbit reticulocyte lysate system demonstrated that the C1021-->T mutation gave reduced FAH activity and reduced amounts of the full-length protein. Bs1EI restriction digestion of PCR products distinguished between the normal and the mutated sequences. Among 516 healthy volunteers of Norwegian origin, the C1021-->T mutation was found in 2.2% of the alleles. Testing for the C1021-->T mutation may solve the problem of prenatal diagnosis and carrier detection in families with compound heterozygote genotypes for HT1 and pseudodeficiency.  相似文献   

10.
Deficient arylsulfatase A activity causes the neurodegenerative disease metachromatic leukodystrophy. However, some individuals with deficient enzyme activity appear clinically normal. This “pseudodeficiency” allele commonly found among many reported populations (frequency ∼ 0.10) is associated with two A→G transitions in cis in the arylsulfatase A gene causing the simultaneous loss of an N-glycosylation and a polyadenylation signal. To understand the evolutionary relationship between such common and tightly linked mutations, we studied 400 individuals in the African, European, Indian and East Asian populations and found none carrying the polyadenylation mutation alone. However, the N-glycosylation mutation could occur independently. Its frequency varied from 0.01 in Indians, 0.06 in Europeans, 0.21 in East Asians to 0.32 in Africans. The frequencies of both mutations occurring together ranged from almost non-existent in the Africans and East Asians, to 0.075 in the Europeans and 0.125 in the Indians. These frequencies were significantly different among populations. Haplotype analysis among homozygous pseudodeficiency individuals and eight multi-generation families with six polymorphic enzymes showed that, of the five haplotypes found in the general population, only one was linked to the double mutations. Alleles among the four populations with only the N-glycosylation mutation also supported linkage to the same haplotype except in some Europeans whose alleles were discordant. These results are consistent with the hypothesis that the N-glycosylation mutation may be a recurrent event among the Europeans but first occurred in an ancestral allele before the emergence of modern Homo sapiens from Africa at ∼100 000–200 000 years ago. Subsequently, the polyadenylation mutation occurred in this ancient allele with the N-glycosylation mutation, an event that likely took place after the divergence between the European and East Asian lineages. Received: 23 December 1996 / Accepted: 21 July 1997  相似文献   

11.
K. A. Hudak  J. M. Lopes    S. A. Henry 《Genetics》1994,136(2):475-483
Three mutants were identified in a genetic screen using an INO1-lacZ fusion to detect altered INO1 regulation in Saccharomyces cerevisiae. These strains harbor mutations that render the cell unable to fully repress expression of INO1, the structural gene for inositol-1-phosphate synthase. The Cpe(-) (constitutive phospholipid gene expression) phenotype associated with these mutations segregated 2:2, indicating that it was the result of a single gene mutation. The mutations were shown to be recessive and allelic. A strain carrying the tightest of the three alleles was examined in detail and was found to express the set of co-regulated phospholipid structural genes (INO1, CHO1, CHO2 and OPI3) constitutively. The Cpe(-) mutants also exhibited a pleiotropic defect in sporulation. The mutations were mapped to the right arm of chromosome XV, close to the centromere, where it was discovered that they were allelic to the previously identified regulatory mutation sin3 (sdi1, ume4, rpd1, gam2). A sin3 null mutation failed to complement the mutation conferring the Cpe(-) phenotype. A mutant harboring a sin3 null allele exhibited the same altered INO1 expression pattern observed in strains carrying the Cpe(-) mutations isolated in this study.  相似文献   

12.
Summary Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ASA). A substantial ASA deficiency has also been described in clinically healthy persons, a condition for which the term pseudodeficiency was introduced. The discrimination of both kinds of deficiencies based on ASA activity determination is difficult and unreliable. This creates a serious problem in the genetic counseling and diagnosis of MLD. The mutations characteristic for the pseudodeficiency (PD) allele have recently been identified. A non-radioactive assay based on the polymerase chain reaction is described, which allows the rapid detection of the ASA pd allele. The assay utilizes pairs of primers that allow either the amplification of the ASA PD allele or of other ASA alleles, since their 3 residues match either the ASA PD allele or other ASA alleles.  相似文献   

13.
Mutant strains of Escherichia coli were screened for the ability to grow on L agar plates containing 3.4 or 4.6 mM sodium azide. Most mutants had mutations located in the leucine region, presumably at the azi locus. Two of these mutants were found to have a mutation in the secA gene, but expression of the resistance phenotype also required the presence of upstream gene X. While a plasmid carrying the X-secA mutant gene pair was able to confer azide resistance to a sensitive host, a similar plasmid harboring the wild-type secA allele rendered a resistant strain sensitive to azide, indicating codominance of the two alleles. That azide inhibits SecA is consistent with the fact that SecA has ATPase activity, an activity that is often prone to inhibition by azide.  相似文献   

14.
We identified a patient suffering from late-infantile metachromatic leukodystrophy (MLD) who has a residual arylsulfatase A (ARSA) activity of about 10%. Fibroblasts of the patient show significant sulfatide degradation activity exceeding that of adult MLD patients. Analysis of the ARSA gene in this patient revealed heterozygosity for two new mutant alleles: in one allele, deletion of C 447 in exon 2 leads to a frameshift and to a premature stop codon at amino acid position 105; in the second allele, a G-->A transition in exon 5 causes a Gly309-->Ser substitution. Transient expression of the mutant Ser309-ARSA resulted in only 13% enzyme activity of that observed in cells expressing normal ARSA. The mutant ARSA is correctly targeted to the lysosomes but is unstable. These findings are in contrast to previous results showing that the late-infantile type of MLD is always associated with the complete absence of ARSA activity. The expression of the mutant ARSA protein may be influenced by particular features of oligodendrocytes, such that the level of mutant enzyme is lower in these cells than in others.  相似文献   

15.
Deficient activity of beta-hexosaminidase A (Hex A), resulting from mutations in the HEXA gene, typically causes Tay-Sachs disease. However, healthy individuals lacking Hex A activity against synthetic substrates (i.e., individuals who are pseudodeficient) have been described. Recently, an apparently benign C739-to-T (Arg247Trp) mutation was found among individuals with Hex A levels indistinguishable from those of carriers of Tay-Sachs disease. This allele, when in compound heterozygosity with a second "disease-causing" allele, results in Hex A pseudodeficiency. We examined the HEXA gene of a healthy 42-year-old who was Hex A deficient but did not have the C739-to-T mutation. The HEXA exons were PCR amplified, and the products were analyzed for mutations by using restriction-enzyme digestion or single-strand gel electrophoresis. A G805-to-A (Gly269Ser) mutation associated with adult-onset GM2 gangliosidosis was found on one chromosome. A new mutation, C745-to-T (Arg249Trp), was identified on the second chromosome. This mutation was detected in an additional 4/63 (6%) non-Jewish and 0/218 Ashkenazi Jewish enzyme-defined carriers. Although the Arg249Trp change may result in a late-onset form of GM2 gangliosidosis, any phenotype must be very mild. This new mutation and the benign C739-to-T mutation together account for approximately 38% of non-Jewish enzyme-defined carriers. Because carriers of the C739-to-T and C745-to-T mutations cannot be differentiated from carriers of disease-causing alleles by using the classical biochemical screening approaches, DNA-based analyses for these mutations should be offered for non-Jewish enzyme-defined heterozygotes, before definitive counseling is provided.  相似文献   

16.
A 9-bp deletion (2320del9) was detected in the arylsulfatase A genes of a patient with late infantile metachromatic leukodystrophy and of a patient with nonprogressive neurological symptoms and very low arylsulfatase A activity. Both patients are heterozygous for the deletion, which involves codons 406–408 and causes loss of a Ser-Asp-Thr tract in the predicted protein. In both patients the 9-bp deletion lies in a pseudodeficiency allele. The patient with metachromatic leukodystrophy carries the common 459 + 1G > A mutation in the other allele. The other patient is homozygous for the pseudodeficiency allele, and consequently is a compound heterozygote for a metachromatic leukodystrophy allele and a pseudodeficiency allele. We hypothesize that the compound heterozygosity predisposes to the development of nonprogressive neurological symptoms in the presence of additional, still unknown, genetic or nongenetic factors. Received: 18 April 1997 / Accepted: 16 August 1997  相似文献   

17.
The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.  相似文献   

18.
Deficiency of beta-hexosaminidase A (Hex A) activity typically results in Tay-Sachs disease. However, healthy subjects found to be deficient in Hex A activity (i.e., pseudodeficient) by means of in vitro biochemical tests have been described. We analyzed the HEXA gene of one pseudodeficient subject and identified both a C739-to-T substitution that changes Arg247----Trp on one allele and a previously identified Tay-Sachs disease mutation on the second allele. Six additional pseudodeficient subjects were found to have the C739-to-T mutation. This allele accounted for 32% (20/62) of non-Jewish enzyme-defined Tay-Sachs disease carriers but for none of 36 Jewish enzyme-defined carriers who did not have one of three known mutations common to this group. The C739-to-T allele, together with a "true" Tay-Sachs disease allele, causes Hex A pseudodeficiency. Given both the large proportion of non-Jewish carriers with this allele and that standard biochemical screening cannot differentiate between heterozygotes for the C739-to-T mutations and Tay-Sachs disease carriers, DNA testing for this mutation in at-risk couples is essential. This could prevent unnecessary or incorrect prenatal diagnoses.  相似文献   

19.
CONSTANS (CO) promotes flowering of Arabidopsis in response to long photoperiods. Transgenic plants carrying CO fused with the cauliflower mosaic virus 35S promoter (35S::CO) flowered earlier than did the wild type and were almost completely insensitive to length of day. Genes required for CO to promote flowering were identified by screening for mutations that suppress the effect of 35S::CO. Four mutations were identified that partially suppressed the early-flowering phenotype caused by 35S::CO. One of these mutations, suppressor of overexpression of CO 1 (soc1), defines a new locus, demonstrating that the mutagenesis approach is effective in identifying novel flowering-time mutations. The other three suppressor mutations are allelic with previously described mutations that cause late flowering. Two of them are alleles of ft, indicating that FT is required for CO to promote early flowering and most likely acts after CO in the hierarchy of flowering-time genes. The fourth suppressor mutation is an allele of fwa, and fwa soc1 35S::CO plants flowered at approximately the same time as co mutants, suggesting that a combination of fwa and soc1 abolishes the promotion of flowering by CO. Besides delaying flowering, fwa acted synergistically with 35S::CO to repress floral development after bolting. The latter phenotype was not shown by any of the progenitors and was most probably caused by a reduction in the function of LEAFY. These genetic interactions suggest models for how CO, FWA, FT, and SOC1 interact during the transition to flowering.  相似文献   

20.
A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号