首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Omnes  M. H.  Recek  S.  Barone  H.  Le Delliou  H.  Schmitz  A.  Mutelet  A.  Suquet  M.  & Robin  J. H. 《Journal of fish biology》2004,65(S1):333-333
Four‐year‐old pollack Pollachius pollachius L., previously fed on dry pellets since their juvenile stage, were divided into three experimental groups two months prior their first spawning season. They were fed a commercial broodstock pellet enriched with 6% added oils, either: (1) capelin oil (control), (2) capelin oil plus arachidonic acid, or (3) DHA rich tuna oil. Spawning performance was determined in each group and egg lipids were analysed. During the vitellogenic period, the estradiol levels in plasma increased with oocyte enlargement, indicating that captivity and pelleted feed did not affect reproductive capacity. Females from each group spawned spontaneously between February and May. Egg production per kg of female was highest in the control group. Fertilization rate was highest (39%) in the group fed on diet enhanced in DHA. Lipid content in eggs reached 16% of dry mass, containing mainly phospholipids (75%). Egg fatty acid profiles showed few differences between dietary treatments. There was no significant difference in the concentration of Docosahexaenoic acid (22:6n − 3) between groups. Arachidonic acid (20:4n − 6) was lower in neutral and polar lipids of eggs from the control group than in the other groups. Tuna oil diet induced the highest DHA/EPA ratio in eggs and seemed to provide sufficient arachidonic acid for pollack broodstock. Egg fatty acid profiles are compared with 6 year‐old pollack broodstock fed on fish, and with other cultured and wild fish species.  相似文献   

2.
Larval red drum Sciaenops ocellatus survival, turning rate, routine swimming speed, escape response latency and escape response distance were significantly correlated with essential fatty‐acid (EFA) concentrations in eggs. Of the five traits that varied with egg EFA content, two (escape response latency and routine swimming speed) were significantly different when larvae were fed enriched diets compared with the low fatty‐acid diet, indicating that the larval diet can compensate for some imbalances in egg composition. Turning rate during routine swimming and escape response distance, however, did not change when larvae predicted to have low performance (based on egg composition) were fed an enriched diet, indicating that these effects of egg composition may be irreversible. Escape response distances and survival rates of larvae predicted to perform well (based on egg composition) and fed highly enriched diets were lower than expected, suggesting that high levels of EFA intake can be detrimental. Altogether, these results suggest that both maternal diet, which is responsible for egg EFA composition, and larval diet may play a role in larval survivorship and recruitment.  相似文献   

3.
Two groups of female rats were fed a diet with high (5.9 cal % of linoleate + linolenate) or low (0.78 cal % of linoleate + linolenate) essential fatty acid (EFA) concentration. The effects of the EFA concentration during gestation on liver lipid and fatty acid composition were studied in the fetuses at 15 and 20 days of intrauterine life. Fetal and liver weights were identical in the two groups; at day 20 the contents of proteins, total cholesterol, phospholipids and glycolipids were significantly decreased (p less than 0.01) with the low EFA diet while at day 15 only total cholesterol was affected (p less than 0.05). At both gestational ages the triacylglycerol content was increased in the low EFA group (day 15 p less than 0.05, day 20 p less than 0.01). The maternal EFA deficiency resulted in higher levels of 16:1 n-7 in the phospholipid fractions and 16:1 n-7 and 18:1 n-7 in the neutral lipids. The increase in these monoenoic derivatives partially compensated the decrease of the polyunsaturated species 18:2 n-6 and 20:4 n-6. In conclusion the low EFA diet results in important modifications of the fetal hepatic lipids during intrauterine development.  相似文献   

4.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

5.
Our hypothesis that the trans fatty acids in hydrogenated fat inhibited the synthesis of polyunsaturated fatty acids in the phospholipid of arterial cells was tested with five groups each with six pregnant porcine fed from d 35 of gestation and during lactation. The basal diet contained 2% corn oil (control). The other four diets included the control + 10% butter or 10% hydrogenated fat plus two levels of Mg. Plasma, milk and aortic phospholipid fatty acids, phospholipid composition and calcium content of the aorta from the piglets were determined. At 48 +/- 2 d of age, the aorta phospholipid of piglets from porcine fed hydrogenated fat contained a significantly higher concentration of linoleic acid, less arachidonic acid, and less long chain polyunsaturated fatty acid (PUFA) than did piglets from porcine fed either butterfat or the control diet. Mg had no effect. These changes in composition in piglets from porcine fed hydrogenated fat indicate that trans fat inhibits the metabolic conversion of linoleic acid to arachidonic acid and to other n-6 PUFA. The aortic calcium content data showed a significant interaction of calcium concentration with age. We concluded: 1) that dietary trans fat perturbed essential fatty acid (EFA) metabolism which led to changes in the phospholipid fatty acid composition in the aorta, the target tissue of atherogenesis, 2) this inhibition of EFA to PUFA by the isomeric fatty acids in hydrogenated fat is a risk factor in the development of coronary heart disease.  相似文献   

6.
Dietary lipid quantity and quality have recently been shown to affect serum leptin levels in adult rats. Moreover, suckling pups from dams fed a high fat diet had increased serum leptin levels. The aim of the present study was to analyze the influence of essential fatty acid (EFA) deficiency on serum leptin levels in dams and their pups during the suckling period. For the last 10 days of gestation and throughout lactation, pregnant rats were fed a control or an EFA-deficient (EFAD) diet. The levels of leptin and EFA in the serum of the dams and pups were analyzed 1, 2, and 3 weeks after delivery. In parallel, serum levels of glucose and corticosterone were analyzed in the pups. Low serum leptin levels were found in the control lactating dams during the entire lactation period compared with the age-matched nonlactating animals. The leptin concentrations in the lactating dams fed the EFAD diet were lower compared with those fed the control diet. The serum leptin levels of suckling pups from dams on the EFAD diet were markedly decreased compared with controls (P < 0.05). The reduced serum leptin levels could not be explained by nutritional restriction as evaluated by serum levels of glucose and corticosterone. These results indicate the importance of the EFA composition of the maternal diet for serum leptin levels in both dams and pups. EFA deficiency in lactating dams may cause long-term effects on the pups through dysregulation of leptin and leptin-dependent functions. -- Korotkova, M., B. Gabrielsson, L. A. Hanson, and B. Strandvik. Maternal essential fatty acid deficiency depresses serum leptin levels in suckling rat pups. J. Lipid Res. 2001. 42: 359--365.  相似文献   

7.
In order to study the response of a poorly differentiated tumor to nutritional manipulation, the Yoshida ascites hepatoma (AH 130) was grown in rats fed an essential fatty acid (EFA)-deficient diet and in rats fed a control diet. Hepatomas, livers, and blood plasma from host rats and normal rats were studied as to the effects of EFA deficiency on the lipid composition. Normal rats fed an EFA-deficient diet showed an increased concentration of triglycerides and cholesteryl esters in the liver and a reduced level of total phospholipids in plasma. Host rats fed the EFA-deficient diet showed a lower concentration of triglycerides in the liver when compared with the host rats fed a control diet. In addition, EFA-deficient host rats had reduced levels of plasma free fatty acids and triglycerides. These latter were markedly high in host rats under normal dietetic conditions. As compared to the livers of either host rats or normal rats fed the control diet, the Yoshida hepatoma cells had a lower content of total phospholipids and free fatty acids as well as a higher level of free cholesterol; they also showed a typical fatty acid pattern in their phospholipids. The main characteristics of this pattern were a high content of oleic and palmitoleic acids and a low level of C20 and C22 polyunsaturated fatty acids. Exposure of Yoshida hepatoma cells to an EFA-deficient environment resulted in a decrease in the concentration of total phospholipids and free fatty acids and in changes in the fatty acid composition similar to those observed in the livers of normal and host rats. These changes suggest that, under the experimental conditions used, the Yoshida hepatoma cells are responsive to EFA deficiency.  相似文献   

8.
A synthetic diet preparation supplemented with 10% by weight of either safflower oil, hydrogenated coconut oil containing 3% safflower oil, or 'max EPA' fish oil was fed to rats over a 8-week period. Serial measurements of serum fatty acids, serum thromboxane B2 and urinary prostaglandin excretion were taken during the treatment period to assess the rate of change in fatty acid composition and prostaglandin synthesis following dietary manipulation. There was no significant change in weight gain between the dietary groups during the treatment period. Significant changes in serum fatty acids occurred within 48 h of treatment, with the 'max EPA' oil group having arachidonic acid levels reduced by 23% (P less than 0.01) compared to the coconut oil group. Conversely, rats fed safflower oil had an 18% enhancement of arachidonic acid during the same time period. Whole blood synthesis of thromboxane B2 was significantly depressed (P less than 0.01) after 48 h in rats fed 'max EPA' oil compared to the safflower oil or coconut oil groups. This suppression reached a maximum of 65% (P less than 0.001) after 7 days of dietary 'max EPA' oil treatment. The safflower oil and coconut oil-fed groups showed the same levels of serum thromboxane B2 production over the treatment period. Urinary excretion of both 6-ketoprostaglandin F1 alpha and prostaglandin E2 varied significantly (P less than 0.01) between the groups after 7 days of dietary treatment. Rats fed 'max EPA' oil had depressed urinary prostanoid excretion compared to the safflower and coconut oil groups which remained very similar to each other. After the 8-week treatment period rats were killed and the phospholipid fatty acid composition and prostaglandin-generating capacity of platelets, aorta and renal tissue was examined. Prostanoid production by kidney cortex and medulla and segments of aorta was consistently suppressed in rats fed 'max EPA' oil. These observations correlated well with changes in the phospholipid fatty acid profiles in these tissues. This study shows rapid changes in serum fatty acids and thromboxane B2 generation following dietary manipulation, while changes in urinary excretion or prostanoid metabolites occur only after a longer time period.  相似文献   

9.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

10.
Dietary fish oil increases levels of (n-3) fatty acids in the brain and retina of younger animals but has less effect in adults. The duration of the effects of fish oil in young animals, as well as the extent of reversibility of the effects, are unknown. Laying hens were fed either a fish oil diet or a soybean oil-based control diet. Resulting chicks were assigned to three diet groups: chicks from fish oil and soybean oil hens were continued on fish oil and soybean oil diets, respectively, for 0, 3, 6, or 9 weeks, and additional chicks from the fish oil hens were fed the fish oil diet for 0, 3, or 6 weeks and then reversed to the soybean oil diet for a period of 3 weeks. The fatty acid composition of the brain, retina, liver, and serum of the reversal chicks was compared with chicks fed the fish oil diet only or the soybean oil diet only. Brain levels of docosahexaenoic acid (22:6(n-3)) decreased substantially when reversal from the fish oil diet to the control diet was begun at hatching, but did not decrease when reversal was begun at later times. Other (n-3) fatty acids in the brain, docosapentaenoic acid (22:5(n-3)) and eicosapentaenoic acid (20:5(n-3)), decreased substantially at all ages, and to a greater extent than 22:6(n-3). Brain arachidonic acid (20:4(n-6)), which was low in fish oil chicks, rose to control after reversal at hatching, but recovered only partially when reversal was begun at later times. A similar patterns was observed in the retina. Serum and liver (n-3) fatty acids fell to control in all reversal chicks, and (n-6) fatty acids increased to control, except in chicks reversed at 6 weeks. This study demonstrates that by 3 weeks of age the chick brain strongly resists diet-induced lowering of high levels of 22:6(n-3).  相似文献   

11.
Rainbow trout (Oncorhynchus mykiss) were fed either a control diet containing fish oil or an essential fatty acid (EFA) deficient diet containing only hydrogenated coconut oil and palmitic acid as lipid source (93.4% saturated fatty acids) for 14 weeks and the fatty acid compositions of individual phospholipid classes from skin and opercular membrane (OM) determined. The permeability of skin and OM to water and the production of eicosanoids in skin and gills challenged with the Ca2+ ionophore A23187 were also measured. Phospholipid (PL) fatty acid compositions were substantially modified in EFA-deficient fish, with increased saturated fatty acids and decreased polyunsaturated fatty acids (PUFA), especially arachidonic acid (AA) and eicosapentaenoic acid (EPA), while docosahexaenoic acid (DHA) was largely retained. The onset of EFA deficiency was shown by the appearance of n-9 PUFA, particularly 20:3n-9. The main effects of EFA deficiency on phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were to increase saturated fatty acids and monoenes, especially 16:1 and 18:1, and to decrease EPA and DHA. The content of DHA in phosphatidylserine (PS) was high in control animals (40% in skin and 35% in opercular membrane) and was mostly retained in EFA deficient animals. Arachidonic acid (AA) was the most abundant PUFA esterified to phosphatidylinositol (PI) and was significantly reduced in EFA deficient animals (from 31% to 13% in skin), where a large amount of 20:3n-9 (9% in skin) was also present. Influxes and effluxes of water through skin and opercular membrane were measured in vitro. No differences were detected between rainbow trout fed the control or the EFA deficient diet. 12-Hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHE) could not be detected in skin from control or EFA deficient fish. There was no difference between control and EFA deficient trout in the levels of leukotriene C4 (LTC4) and leukotriene C5 (LTC5) in skin cells challenged with the calcium ionophore A23187, and of prostaglandin F (PGF), 12-HETE and 12-HEPE in gill cells challenged similarly. Prostaglandin F (PGF) production by ionophore stimulated gill cells was significantly reduced in fish fed the EFA-deficient diet. 14-HDHE produced by gill cells was 3.3 fold higher in EFA deficient fish compared to controls.  相似文献   

12.
The effect of age on uterine fatty acid composition was studied in rats fed diets of differing fatty acid composition. Uteri of newly weaned 23-day rats had a higher fatty acid content and a higher proportion of short-chain (less than or equal to C18) fatty acids. Higher incorporation of C less than or equal to 18 fatty acids into neutral lipid (NL) and phospholipid (PL) of young 42-day rats compared with adult 240-day rats was detected. Uterine NL incorporated predominantly C less than or equal to 18 fatty acids which may be an important metabolic energy store in developing uterine tissue. Incorporation of C less than or equal to 18 fatty acids by uterine PL and NL was relatively unselective. In contrast, there was selective retention of arachidonic acid (AA) and docosahexanoic acid (DHA) throughout uterine development. An effect of dietary EFA on uterine n-3 and n-6 EFA was detected in each age group. There was marked retention of uterine AA when dietary supplies of n-6 EFA were low, but the total AA, eicosapentaenoic acid (EPA) and DHA in uterine PL remained constant in the three diet groups, and a constant content of AA, EPA and DHA was maintained throughout uterine development, regardless of diet. The degree of n-3 substitution achieved in this study inhibited uterine release of PG and parturition in adult rats.  相似文献   

13.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

14.
Abstract— Rats were supplied from before birth with an essential fatty acid (EFA) deficient, a control, or an EFA deficient-control combination diet for various periods up to 6 months. It was found that EFA deficiency resulted in brain weights decreased in comparison with control values throughout development. The brain weight/body weight relationship, however, expressed by Donaldson's equation was generally maintained in animals fed either totally deficient or control diets. Animals deficient even during the brain's most actively growing period were able to recover completely on restoration of the control diet for a sufficiently long period. Fatty acid alterations in brain ethanolamine phosphoglyceride (EPG) during EFA deficiency were extensive. Acids of the ω6 family (18:2, 20:2, 20:3, 20:4, 22:3, 22:4 but not 22:5) were reduced from control figures. In the w9 family 20:3 and 22:3 were especially elevated whereas 22:6 ω3 levels were similar to those of the controls, finally decreasing only after a lengthy period of EFA deprivation. Mean unsaturation contents, as expressed by the proposed unsaturation index notation (Ulmol) agreed closely in EPG fatty acids of deficient and control rats at a particular age. On substitution of the control for the deficient diet the ω6 family rebounded in a manner such that values for 20:4, 22:4, and 22:5 exceeded comparable figures in control animals. Concomitantly the ω9 family receded below control levels, and ω3 acids remained or returned to normal. This overadjustment in ω6 and ω9 families continued even after a prolonged period on the control diet.  相似文献   

15.
Spontaneously hypertensive (SHR) and normotensive rats were fed a diet supplemented with linseed oil or cod liver oil for 22 weeks. The most remarkable finding was an extreme fall of linoleic acid in lipids from renal medulla after cod liver oil supplementation. In free fatty acids (FFA) eicosatrienoic acid (C2): 3n-9) appeared increased as a sign of essential fatty acid (EFA) deficiency.  相似文献   

16.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of dietary hydrogenated fat (Indian vanaspati) high in trans fatty acids (6 en%) on lipid composition, fluidity and function of rat intestinal brush border membrane was studied at 2 and 8 en% of linoleic acid. Three groups of weanling rats were fed rice-pulse based diet containing 10% fat over a ten week period: Group I (groundnut oil), Group II (vanaspati), Group III (vanaspati + safflower oil). The functionality of the brush border membrane was assessed by the activity of membrane bound enzymes and transport of D-glucose and L-leucine. The levels of total cholesterol and phospholipids were similar in all groups. The data on fatty acid composition of membrane phospholipids showed that, at 2 en% of linoleic acid in the diet, trans fatty acids lowered arachidonic acid and increased linoleic acid contents indicating altered polyunsaturated fatty acid metabolism. Alkaline phosphatase activity was increased while the activities of sucrase, gamma-glutamyl transpeptidase and transport of D-glucose and L-leucine were not altered by dietary trans fatty acids. However at higher intake of linoleic acid in the diet, trans fatty acids have no effect on polyunsaturated fatty acid composition and alkaline phosphatase activity of intestinal brush border membrane. These data suggest that feeding dietary fat high in trans fatty acids is associated with alteration in intestinal brush border membrane polyunsaturated fatty acid composition and alkaline phosphatase activity only when the dietary linoleic acid is low.  相似文献   

18.
In order to compare the effects of different sources of dietary protein on the fatty acid composition of phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), cholesteryl esters and triacylglycerols, male rats were fed for a 4-week period on cholesterol-free, or cholesterol-containing, diets based on casein, or soybean protein and olive oil. The most conspicuous difference observed was the occurrence of significantly higher levels of 5,8,11-eicosatrienoic acid, 20:3 (n - 9), in the different lipid classes of casein-fed, compared with soybean protein-fed, animals. In the PI fraction of livers from the groups of rats fed casein diet, this fatty acid amounted to between 9.9 and 13.3% by weight of the total fatty acids. Phospholipids from livers of casein-fed rats contained increased levels of oleic acid, 18:1 (n - 9) (in PC and PE) and reduced levels of stearic acid (18:0). Moreover, in this group of rats PI contained a reduced level of arachidonic acid, 20:4 (n - 6). A casein-related decrease in the linoleic acid, 18:2 (n - 6), content of PC and PE was observed only in the rats fed on cholesterol-free diet. Effects on the fatty acid composition were also observed in the triacyglycerol and cholesteryl ester fractions, in which the rats fed casein diet showed higher levels of palmitoleic acid, 16:1 (n - 7) (cholesterol-supplemented diet) and lower values for linoleic acid, than the soybean protein-fed rats.  相似文献   

19.
The effect of the degree of dietary fat saturation on the hepatic expression of apolipoprotein A-I mRNA was studied in male rats. Animals were maintained for two months on a high fat diet (40% w/w) containing 0.1% cholesterol. Two groups of control animals received either chow diet or chow plus 0.1% cholesterol, while experimental groups received their fat supplement as coconut, corn or olive oil respectively. Dietary cholesterol did not affect apolipoprotein A-I mRNA levels as compared to control animals. Corn oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA than those receiving cholesterol, or coconut oil plus cholesterol. Olive oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA when compared to all other dietary groups. Our data indicate that monounsaturated fatty acids supplied as olive oil play a major role in regulating the hepatic expression of apolipoprotein A-I in male rats.  相似文献   

20.
Conjugated linoleic acid (CLA) induces a body fat loss that is enhanced in mice fed coconut oil (CO), which lacks essential fatty acids (EFA). Our objective was to determine if CO enhancement of CLA-induced body fat loss is due to the lack of EFA. The CLA-EFA interaction was tested by feeding CO and fat free (FF) diets for varying times with and without replenishment of individual EFA. Mice fed CO during only the 2-week CLA-feeding period did not differ from control mice in their adipose EFA content but still tended (P=0.06) to be leaner than mice fed soy oil (SO). Mice raised on CO or FF diets and fed CLA were leaner than the SO+CLA-fed mice (P<0.01). Mice raised on CO and then replenished with linoleic, linolenic, or arachidonic acid were leaner when fed CLA than mice raised on SO (P<0.001). Body fat of CO+CLA-fed mice was not affected by EFA addition. In summary, CO-fed mice not lacking in tissue EFA responded more to CLA than SO-fed mice. Also, EFA addition to CO diets did not alter the enhanced response to CLA. Therefore, the increased response to CLA in mice raised on CO or FF diets appears to be independent of a dietary EFA deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号