首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Frictional properties of regenerated cartilage in vitro   总被引:5,自引:0,他引:5  
Although tribological function is the most important mechanical property of articular cartilage, few studies have examined this function in tissue-engineered cartilage. We investigated changes in the frictional properties of cartilage regenerated from the inoculation of rabbit chondrocytes into fibroin sponge. A reciprocating friction-testing apparatus was used to measure the friction coefficient of the regenerated cartilage under a small load. The specimen was slid against a stainless steel plate in a water vessel filled with physiological saline. The applied load was 0.03 N, the stroke length was 20 mm, and the mean sliding velocity was 0.8 mm/s. The friction coefficient of the regenerated cartilage decreased with increasing cultivation time, because a hydrophilic layer of synthesized extracellular matrix was formed on the fibroin sponge surface. The friction coefficient of the regenerated cartilage was as low as that of natural cartilage in the early stages of the sliding tests, but it increased with increasing duration of sliding owing to exudation of interstitial water from the surface layer.  相似文献   

2.
The experimentally measured indentation displacement and friction of normal and degraded (treated with chondroitinase AC) bovine articular cartilage plugs against a smooth steel plate were compared with the predictions based on the biphasic theory using the finite element method. It was found that the measured indentation displacement of both cartilage specimens could be predicted from the biphasic theory and the permeability for the degraded cartilage specimen was increased approximately three times. However, the measured friction coefficient was much lower for short period of loading, and the difference in the finite element prediction of friction coefficient between the normal and degraded cartilage specimens was not observed in the experiment. Therefore, it was concluded that both biphasic and other mechanisms were important in controlling the frictional and lubricating characteristics of articular cartilage in mixed and boundary lubrication regimes.  相似文献   

3.
It was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation. Articular cartilage samples (n = 34) harvested from the femoral condyles of five bovine knee joints (1-3 months old) were tested in unconfined compression with simultaneous continuous sliding (+/-1.5 mm at 1 mm/s) under stress relaxation. Results showed a significantly higher minimum friction coefficient in specimens treated with 0.1 micro/ml of chondroitinase ABC for 24 h (micro(min) = 0.082+/-0.024) compared to control specimens (micro(min) = 0.047+/-0.014). Treated samples also exhibited higher equilibrium friction coefficient (micro(eq) = 0.232+/-0.049) than control samples (micro(eq) = 0.184+/-0.036), which suggest that the frictional response is greatly influenced by the degree of tissue degradation. The fluid load support was predicted from theory, and the maximum value (as a percentage of the total applied load) was lower in treated specimens (77+/-12%) than in control specimens (85+/-6%). Based on earlier findings, the increase in the ratio micro(min)/micro(eq) may be attributed to the decrease in fluid load support.  相似文献   

4.
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.  相似文献   

5.
The specific aim of this study was to investigate the effect of chondroitinase ABC treatment on the frictional response of bovine articular cartilage against glass, under creep loading. The hypothesis is that chondroitinase ABC treatment increases the friction coefficient of bovine articular cartilage under creep. Articular cartilage samples (n = 12) harvested from two bovine knee joints (1-3 months old) were divided into a control group (intact specimens) and a treated group (chondroitinase ABC digestion), and tested in unconfined compression with simultaneous continuous sliding (+/- 4 mm at 1 mm/s) under a constant applied stress of 0.5 MPa, for 2500 s. The time-dependent response of the friction coefficient was measured. With increasing duration of loading, treated samples exhibited a significantly higher friction coefficient than control samples as assessed by the equilibrium value (treated: micro(eq) = 0.19 +/- 0.02; control: micro(eq) = 0.12 +/- 0.03; p = 0.002), though the coefficient achieved immediately upon loading did not increase significantly (treated: micro(min) = 0.0053 +/- 0.0025; control: micro(min) = 0.037 +/- 0.0013; p = 0.19). Our results demonstrate that removal of the cartilage glycosaminoglycans using chondroitinase ABC significantly increases the overall time-dependent friction coefficient of articular cartilage. These findings strengthen the motivation for developing chondroprotective strategies by increasing cartilage chondroitin sulfate content in osteoarthritic joints.  相似文献   

6.
The hypothesis of this study is that the time constant for the transient increase in friction coefficient of articular cartilage under a constant load is proportional to the size of the contact area, as predicated by the dependence of the frictional response on interstitial fluid pressurization. This hypothesis is verified experimentally from measurements of the frictional response of bovine articular cartilage disks of three different diameters (4, 6 and 8mm) against glass. At two different applied stresses (0.127 and 0.254 MPa), the coefficient of determination of a linear regression of the time constant versus the contact area yielded R(2) = 0.892 and R(2) = 0.979 (p < 0.001). The results of this study provide a cogent explanation for the expectation that the friction coefficient in situ will not achieve the elevated equilibrium values observed under common testing conditions.  相似文献   

7.
Articular cartilage plays an important role in the lubrication of synovial joints because of its peculiar characteristics. In this work, the frictional and superficial characteristics of articular cartilage were evaluated simultaneously during intermittent sliding and loading. The apparatus used for the analysis of the articular surface was based on the evanescent waves, where a laser light was reflected at the interface between a prism and a specimen of articular cartilage. Friction forces were measured due to the sliding of specimens on the prism. Images of reflected light were analyzed and attenuation of the reflectance was associated with the presence of collagen fibers near the interface, which interacted with the evanescent waves because of the high refractive index of these fibers. Specimens were tested in the intervals of 5.5 min with an interruption of 10 and 30 s in the sliding and loading. Results indicated a decrease in the both friction coefficient and attenuation of reflectance after the unloading. The level of reduction of the friction as well as of the attenuation of reflectance increased as the time of unloading increased. Decrease of friction after unloading was related to the decrease of collagen contents, or increase in water contents, at the articular surface, which was observed through the decrease of the attenuation of reflectance. Results indicated that the increase in the water content at the articular surface and the rehydration ability of articular cartilage after unloading could be responsible for the maintenance of friction in low levels.  相似文献   

8.
Synovial fluid plays an important role in lubricating synovial joints. Its main constituents are hyaluronic acid (HA) and γ–globulin, acting as boundary lubricants for articular cartilage. The aim of the study was to demonstrate the concentration-dependent effect of HA and γ–globulin on the boundary-lubricating ability of human osteoarthritis (OA) cartilage. Normal, early and advance stage articular cartilage samples were obtained from human femoral heads and in presence of either HA or γ–globulin, cartilage frictional coefficient (µ) was measured by atomic force microscopy (AFM). In advanced stage OA, the cartilage superficial layer was observed to be completely removed and the damaged cartilage surface showed a higher µ value (∼0.409) than the normal cartilage surface (∼0.119) in PBS. Adsorbed HA and γ–globulin molecules significantly improved the frictional behavior of advanced OA cartilage, while they were ineffective for normal and early OA cartilage. In advanced-stage OA, the concentration-dependent frictional response of articular cartilage was observed with γ–globulin, but not with HA. Our result suggested that HA and γ–globulin may play a significant role in improving frictional behavior of advanced OA cartilage. During early-stage OA, though HA and γ–globulin had no effect on improving frictional behavior of cartilage, however, they might contribute to disease modifying effects of synovial fluid as observed in clinical settings.  相似文献   

9.
The objective of this study was to test the hypotheses that (1) the steady-state friction coefficient of articular cartilage is significantly smaller under cyclical compressive loading than the equilibrium friction coefficient under static loading, and decreases as a function of loading frequency; (2) the steady-state cartilage interstitial fluid load support remains significantly greater than zero under cyclical compressive loading and increases as a function of loading frequency. Unconfined compression tests with sliding of bovine shoulder cartilage against glass in saline were carried out on fresh cylindrical plugs (n=12), under three sinusoidal loading frequencies (0.05, 0.5 and 1 Hz) and under static loading; the time-dependent friction coefficient mu(eff) was measured. The interstitial fluid load support was also predicted theoretically. Under static loading mu(eff) increased from a minimum value (mu(min)=0.005+/-0.003) to an equilibrium value (mu(eq)=0.153+/-0.032). In cyclical compressive loading tests mu(eff) similarly rose from a minimum value (mu(min)=0.004+/-0.002, 0.003+/-0.001 and 0.003+/-0.001 at 0.05, 0.5 and 1 Hz) and reached a steady-state response oscillating between a lower-bound (mu(lb)=0.092+/-0.016, 0.083+/-0.019 and 0.084+/-0.020) and upper bound (mu(ub)=0.382+/-0.057, 0.358+/-0.059, and 0.298+/-0.061). For all frequencies it was found that mu(ub)>mu(eq) and mu(lb)相似文献   

10.
In situ friction measurement on murine cartilage by atomic force microscopy   总被引:2,自引:1,他引:1  
Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100 nN with a sliding speed of 40 microm/s and sliding distance of 64 microm. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25+/-0.11) were similar to those measured on porcine tissue (0.23+/-0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals.  相似文献   

11.
Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed.  相似文献   

12.
Boundary lubrication of articular cartilage by conformal, molecularly thin films reduces friction and adhesion between asperities at the cartilage-cartilage contact interface when the contact conditions are not conducive to fluid film lubrication. In this study, the nanoscale friction and adhesion properties of articular cartilage from typical load-bearing and non-load-bearing joint regions were studied in the boundary lubrication regime under a range of physiological contact pressures using an atomic force microscope (AFM). Adhesion of load-bearing cartilage was found to be much lower than that of non-load-bearing cartilage. In addition, load-bearing cartilage demonstrated steady and low friction coefficient through the entire load range examined, whereas non-load-bearing cartilage showed higher friction coefficient that decreased nonlinearly with increasing normal load. AFM imaging and roughness calculations indicated that the above trends in the nanotribological properties of cartilage are not due to topographical (roughness) differences. However, immunohistochemistry revealed consistently higher surface concentration of boundary lubricant at load-bearing joint regions. The results of this study suggest that under contact conditions leading to joint starvation from fluid lubrication, the higher content of boundary lubricant at load-bearing cartilage sites preserves synovial joint function by minimizing adhesion and wear at asperity microcontacts, which are precursors for tissue degeneration.  相似文献   

13.
It has been well established that articular cartilage is compositionally and mechanically inhomogenous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1 +/- 1.9 MPa in the deep zone to 8.3 +/- 3.7 MPa at the superficial zone, while the compressive modulus decreases from 0.73 +/- 0.26 MPa to 0.28 +/- 0.16 MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a prerequisite for the functional and morphological integrity of the cartilage.  相似文献   

14.
15.
Lubrication mode analysis of articular cartilage using Stribeck surfaces   总被引:2,自引:0,他引:2  
Lubrication of articular cartilage occurs in distinct modes with various structural and biomolecular mechanisms contributing to the low-friction properties of natural joints. In order to elucidate relative contributions of these factors in normal and diseased tissues, determination and control of lubrication mode must occur. The objectives of these studies were (1) to develop an in vitro cartilage on glass test system to measure friction coefficient, mu; (2) to implement and extend a framework for the determination of cartilage lubrication modes; and (3) to determine the effects of synovial fluid on mu and lubrication mode transitions. Patellofemoral groove cartilage was linearly oscillated against glass under varying magnitudes of compressive strain utilizing phosphate buffered saline (PBS) and equine and bovine synovial fluid as lubricants. The time-dependent frictional properties were measured to determine the lubricant type and strain magnitude dependence for the initial friction coefficient (mu(0)=mu(t-->0)) and equilibrium friction coefficient (mu(eq)=mu(t-->infinity)). Parameters including tissue-glass co-planarity, normal strain, and surface speed were altered to determine the effect of the parameters on lubrication mode via a 'Stribeck surface'. Using this testing apparatus, cartilage exhibited biphasic lubrication with significant influence of strain magnitude on mu(0) and minimal influence on mu(eq), consistent with hydrostatic pressurization as reported by others. Lubrication analysis using 'Stribeck surfaces' demonstrated clear regions of boundary and mixed modes, but hydrodynamic or full film lubrication was not observed even at the highest speed (50mm/s) and lowest strain (5%).  相似文献   

16.
The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.  相似文献   

17.
Hydrogel has been extensively studied as an articular cartilage repair and replacement material. PVA-HA-Silk composite hydrogel was prepared by freezing-thawing method in this paper. Mechanical properties were determined by experiments and the friction coefficient of PVA-HA-Silk composite hydrogel against steel ball was verified using micro-tribometer. Finite Element Method (FEM) was used to study the lubrication mechanism of PVA-HA-Silk composite hydrogel and the relation between the interstitial fluid load support and the start-up friction resistance. The results show that the elastic modulus and the permeability are 2.07 MPa and 10^-15m^4N^-1s^-1, respectively, and the start-up friction coefficients of PVA-HA-Silk composite hydrogel are in the range of 0.154).2 at different contact loads, contact time and sliding speeds. The start-up friction resistance of PVA-HA-Silk composite hydrogel increases with the contact load and contact time. With the increase in sliding speed, the start-up friction resistance of PVA-HA-Silk composite hydrogel decreases. There is an inverse relation between the start-up friction resistance and the interstitial fluid load support. The change of fluid flow with the increase in sliding displacement has an important effect on the interstitial fluid load support and friction resistance. The interstitial fluid load support decreases with the increase in contact load and contact time, while the interstitial fluid load support reinforces with the increase in sliding speed. Moreover, PVA-HA-Silk composite hydrogel has mechanical properties of recovery and self-lubricating.  相似文献   

18.
Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than in compression, and theoretical analyses have suggested that this tension–compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone. Ten human cartilage samples from six patellofemoral joints, and 10 bovine cartilage specimens from three calf patellofemoral joints were tested in unconfined compression. The peak fluid load support was measured at 79±11% and 69±15% at the articular surface and deep zone of human cartilage, respectively, and at 94±4% and 71±8% at the articular surface and deep zone of bovine calf cartilage, respectively. Statistical analyses confirmed both hypotheses of this study. These experimental results suggest that the tension–compression nonlinearity of cartilage is an essential functional property of the tissue which makes interstitial fluid pressurization the dominant mechanism of load support in articular cartilage.  相似文献   

19.
Friction and adhesion of articular cartilage from high- and low-load-bearing regions of bovine knee joints were examined with a tribometer under various loads and equilibration times. The effect of trapped lubricants was investigated by briefly unloading the cartilage sample before friction testing, to allow fluid to reflow into the contact interface and boundary lubricants to rearrange. Friction and adhesion of high-load-bearing joint regions were consistently lower than those of low-load-bearing regions. This investigation is the first to demonstrate the regional variation in the friction and adhesion properties of articular cartilage. Friction coefficient decreased with increasing contact pressure and decreasing equilibration time. Briefly unloading cartilage before the onset of sliding resulted in significantly lower friction and adhesion and a loss of the friction dependence on contact pressure, suggesting an enhancement of the cartilage tribological properties by trapped lubricants. The results of this study reveal significant differences in the friction and adhesion properties between high- and low-load-bearing joint regions and elucidate the role of trapped lubricants in cartilage tribology.  相似文献   

20.
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within +/- 7.42 microns of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号