首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

2.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

3.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

4.
The dimeric Lewis X hexasaccharide p-trifluoroacetamidophenylethyl O-beta-D-galactopyranosyl-(1----4)-O-[alpha-L-fucopyranosyl-(1----3)]-O- (2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----3)-O-beta-D-galactopyrano syl- (1----4)-O-[alpha-L-fucopyranosyl-(1----3)]-2-acetamido-2-deoxy-beta-D- glucopyranoside (14), which is a derivative of a tumor-associated glycolipid, was synthesized from thioglycoside intermediates. A protected disaccharide was used as a key-intermediate for synthesis of the p-nitrophenylethyl glycoside of suitably protected O-beta-D-Galp-(1----4)-O-beta-D-GlcpN-(1----3)-O-beta-D-Galp-(1--- -4)-beta-D- GlcpN, which, after selective deblocking, was di-L-fucosylated and deprotected to give 14.  相似文献   

5.
A facile approach towards the synthesis of 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-2-acetamido-2-deoxy-beta-D-glucopyra nos ide, 2-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-2-acetamido-2-deoxy-alpha-D-galactopyranoside, 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-alpha-D-mannopyranoside, and 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)-(1----6)-beta-D-galactopyranoside has been accomplished through the development and use of methyl 3,4-O-isopropylidene-2-O-(4-methoxybenzyl)-1-thio-beta-L-fucopyranoside as the glycosyl donor.  相似文献   

6.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

7.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

8.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

9.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

10.
In the synthesis of 8-methoxycarbonyloctyl O-(alpha-D-galactopyranosyl)-(1----3)-O-(2-acetamido-2-deoxy-beta-D- mannopyranosyl)-(1----4)-O-(beta-D-glucopyranosyl)-(1----4)-alpha-D- glucopyranoside, which represents a component of the capsular polysaccharide of Streptococcus pneumoniae type 9V, the key step was the coupling of alpha-D-Galp-(1----3)-beta-D-ManpNAc-(1----4)-D-Glc as glycosyl donor with 8-ethoxy-carbonyloctyl 6-O-acetyl-2,3-di-O-benzyl-alpha-D-glucopyranoside as glycosyl acceptor by use of the imidate method. Only the beta-imidate of the trisaccharide could be employed in this glycosidation reaction to give stereoselectively the tetrasaccharide in high yield. The alpha-imidate of the trisaccharide led to hydrolysis of the imidate group.  相似文献   

11.
A chitobiose derivative, methyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-3,6 - di-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside, was derived from the corresponding N-acetyl derivative and this was converted into the glycosyl bromide (5). Glycosidation reaction between 5 and methyl 3,4,6-tri-O-benzyl-alpha-D-mannopyranoside in the presence of silver trifluoromethanesulfonate gave a beta-D-linked trisaccharide derivative. Replacement of the N,N-phthaloyl group by acetyl groups resulted in a product that was converted into methyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-O -(2- acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----2)-3,4,6- tri-O- benzyl-alpha-D-mannopyranoside (11) by use of a few reaction steps. The 4(3)-hydroxyl group of 11 was methanesulfonylated, and the product subjected to SN2 replacement with acetate anion, to give the D-galactosamine-containing trisaccharide derivative (12). After basic hydrolysis of 12, the 4(3)-hydroxyl group was sulfated, and all benzyl groups were removed by hydrogenolysis, giving methyl O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-(1----4)-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----2)-alpha-D-mannopyranosid e monosodium salt, the methyl alpha-glycoside derivative of the peripheral trisaccharide sequence of the pituitary glycoprotein hormone lutropin.  相似文献   

12.
Four new withanolide glycosides, (20R,22R)-O-(3)-[beta-D- xylopyranosyl(1----3), beta-D-xylopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide, (20R,22R)-O-(3)-[beta-D-xylopyranosyl(1----3), beta-D-glucopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide, (20R,22R)-O-(3)-[beta-D- glucopyranosyl(1----3), beta-D-glucopyranosyl(1----4)]-beta-D-glucopyranosyl- 3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide and (20R,22R)-O-(3)-[beta-D-glucopyranosyl(1----3), beta-D- glucopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta, 12 beta,20-trihydroxy- 1 alpha,acetoxy-witha-5,24-dienolide, named dunawithanines C, D, E and F, respectively, were isolated from Dunalia australis. Their structures were elucidated on the basis of spectral and chemical evidence, especially NMR data of the peracetates.  相似文献   

13.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

14.
Steroidal glycosides from the bulbs of Lilium dauricum.   总被引:2,自引:0,他引:2  
The bulbs of Lilium dauricum yielded 11 compounds, including six new steroidal glycosides. The structures have been determined by spectral analysis and hydrolysis to be (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl-( 1----3)]- beta-D-glucopyranoside, (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[beta-D-glucopyranosyl-(1----4)]- beta-D-glucopyranoside, (25R)-spirost-5-en-3 beta-ol (diosgenin) 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl- (1----3)]-beta-D-glucopyranoside, (25R)-3 beta,17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside, (25R)-3 beta, 17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L- arabinopyranosyl-(1----3)]-beta-D-glucopyranoside and (20R,22R)-3 beta,20,22-trihydroxy-5 alpha-cholestan-6-one (tenuifoliol) 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside. The absolute configurations of C-20 and C-22 of tenuifoliol were further confirmed by detailed analysis of the NOE difference spectrum of the corresponding isopropylidene derivative. Several known compounds were also isolated and identified.  相似文献   

15.
Two new saponins were isolated from Mimosa tenuiflora and their structures established as 3-O-[alpha-L-rhamnopyranosyl(1----2)-beta-D-glucopyranosyl-(1----3]-(alp ha-L- arabinopyranosyl-(1----4]-beta-D-xylopyranosyl-(1----2)]-[beta-D- xylopyranosyl-(1----4)]-beta-D-glucopyranosyl)-28-O-alpha-L-rhamnopyrano syl oleanolic acid and 3-O-[alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranosyl-(1----3]-(al pha- L-arabinopyranosyl-(1----4]beta-D-xylopyranosyl-(1----2)]-[beta-D- xylopyranosyl-(1----4)]-beta-D-glucopyranosyl) oleanolic acid.  相似文献   

16.
Coupling of the sodium salt of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose, -beta-D-galactopyranose, O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6-tri-O- acetyl- 1-thio-beta-D-glucopyranose, or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto -2- nonulopyranosylonate)-(2----3)-O-(2,3-di-O-acetyl-6-O-bezoyl -beta-D- galactopyranosyl)-(1----4)-3-O-acetyl-2,6-di-O-benzoyl-1-thio-beta-D- glucopyranose, which were prepared from the corresponding 1-S-acetates, 1, 3, 6, and 9, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-tolylsulfonyl)-4-oc tadecene-1,3-diol (12) derived by tosylation of 11, gave the corresponding beta-thioglycosides 13, 17, 21, and 25, respectively in good yield. The beta-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

17.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

18.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

19.
Triterpene saponins from Verbascum songaricum.   总被引:1,自引:0,他引:1  
Songarosaponin A, B and C isolated from the aerial parts of Verbascum songaricum were shown to be 3-O-[alpha-L-rhamnopyranosyl-(1----4)-beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)-beta-D-fucopyranosyl]-olea-11,13-die ne-3 beta-23,28-triol, 3-0-[alpha-L-rhamnopyranosyl-(1----4)-beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)]-beta-D-fucopyranosyl]-olea-1 1-ene-3 beta-13,23,28-tetrol and 3-O-[beta-D-glucopyranosyl-(1----4)]-[beta-D-glucopyranosyl-(1----3)]-[b eta-D-glucopyranosyl-(1----2)]-beta-D-fucopyranosyl]-13 beta,28-epoxyolea-11-ene-3 beta,23-diol.  相似文献   

20.
Four major saponins from Solidago canadensis.   总被引:8,自引:0,他引:8  
Four new bisdesmosidic saponins each containing eight carbohydrate units were isolated from Solidago canadensis. GC, GC-MS, FABMS analysis and mainly the use of 2D NMR techniques allowed their identification as bayogeninglycosides (canadensissaponins 1-4) 3-O- [beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranosyl]-28-O-[alpha-L- rhamnopyranosyl-(1----3)-beta-D-xylopyranosyl-(1----4)-[beta-D- xylopyranosyl-(1----3)]-alpha-L-rhamnopyranosyl-(1----2)-[beta-D- apio-D-furanosyl-(1----3)]-beta-D-6-deoxyglucopyranosyl- (1----]-bayogenin; -(1----2)-[beta-D-apio-D-furanosyl-(1----3)]-ara- binopyranosyl-(1----]-bayogenin; -[alpha-L-rhamnopyranosyl-(1----3)]-beta- D-6-deoxyglucopyranosyl-(1----]-bayogenin and - [alpha-L-rhamnopyranosyl- (1----3)]-arabinopyranosyl-(1----]-bayogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号