首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M5(PO4)3 F:Eu2+ (M = Ca and Ba) co‐doped with Ce3+ phosphors were successfully prepared by the combustion synthesis method. The introduction of co‐dopant (Ce3+) into the host enhanced the luminescent intensity of the M5(PO4)3 F:Eu2+ (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce3+?Eu2+ ions in M5(PO4)3 F:Eu2+ (M = Ca and Ba) phosphors, where Ce3+ ions act as sensitizers and Eu2+ ions act as activators. The M5(PO4)3 F:Eu2+ (M = Ca and Ba) co‐doped with Ce3+ phosphor exhibits great potential for use in white ultraviolet (UV) light‐emitting diode applications to serve as a single‐phased phosphor that can be pumped with near‐UV or UV light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new halophosphor K3Ca2(SO4)3 F activated by Eu or Ce and K3Ca2(SO4)3 F:Ce,Eu co‐doped halosulfate phosphor has been synthesized by the co‐precipitation method and characterized for its photoluminescence (PL). The PL emission spectra of the K3Ca2(SO4)3 F :Ce phosphor show emission at 334 nm when excited at 278 nm due to 5d → 4f transition of Ce3+ ions. In the K3Ca2(SO4)3 F:Eu lattice, Eu2+ (440 nm) as well as Eu3+ (596 nm and 615 nm) emissions have been observed showing 5D07 F1 and 5D07 F2 transition of the Eu3+ ion, which is in the blue and red region of the visible spectrum respectively. The trivalent europium ion is very useful for studying the nature of metal coordination in various systems owing to its non‐degenerate emitting 5D0 state. K3Ca2(SO4)3 F:Ce,Eu is suitable for Ce3+ → Eu2+ → Eu3+ energy transfer in which Ce3+and Eu2+ play the role of sensitizers and Eu2+ and Eu3+ act as the activators. The observations presented in this paper are relevant for lamp phosphors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Ca3SiO4Cl2 co‐doped with Ce3+,Eu2+ was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3SiO4Cl2: Ce3+,Eu2+ were investigated. Eu2+ ions can give enhanced green emission through Ce3+ → Eu2+ energy transfer in these phosphors. The green phosphor Ca2.9775SiO4Cl2:0.0045Ce3+,0.018Eu2+ showed intense green emission with broader excitation in the near‐ultraviolet light range. A green light‐emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three‐band white LED. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The individual emission and energy transfer between Ce3+ and Eu2+ or Dy3+ in BaCa(SO4)2 mixed alkaline earth sulfate phosphor prepared using a co‐precipitation method is described. The phosphor was characterized by X‐ray diffraction (XRD) and photoluminescence (PL) studies and doped by Ce;Eu and Dy rare earths. All phosphors showed excellent blue–orange emission on excitation with UV light. PL measurements reveal that the emission intensity of Eu2+ or Dy3+ dopants is greater than when they are co‐doped with Ce3+. An efficient Ce3+ → Eu2+ [2T2g(4f65d) → 8S7/2(4f7)] and Ce3+ → Dy3+ (4 F9/26H15/2 and 4 F9/26H13/2) energy transfer takes place in the BaCa(SO4)2 host. A strong blue emission peak was observed at 462 nm for Eu2+ ions and an orange emission peak at 574 nm for Dy3+ ions. Hence, this phosphor may be used as a lamp phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Triple whitlockite‐type structure‐based red phosphors Ca8MgBi1?x(PO4)7:xEu3+ (x = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid‐state reaction route and characterized by their X‐ray crystal structures. The X‐ray diffraction (XRD) patterns, Fourier transform infrared spectra, morphologies, photoluminescence spectra, UV/Vis reflectance spectra, decay times and the International Commission on Illumination (CIE) chromaticity coordinates of Ca8MgBi1?x(PO4)7:xEu3+ were analyzed. Eu‐doped Ca8MgBi(PO4)7 phosphors exhibited strong red luminescence with peaks at 616 nm due to the 5D07 F2 electric dipole transition of Eu3+ ions after excitation at 396 nm. The UV/Vis spectra indicated that the band gap of Ca8MgBi0.30(PO4)7:0.70Eu3+ is larger than that of Ca8MgBi(PO4)7. The phosphor developed in this study has great potential as a red‐light‐emitting phosphor for UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this article we report Eu3+ luminescence in novel K3Ca2(SO4)3Cl phosphors prepared by wet chemical methods. The Eu3+ emission was observed at 594 nm and 615 nm, keeping the excitation wavelength constant at 396 nm nearer to light‐emitting diode excitation, Furthermore, phosphors were characterized by X‐ray diffraction for the confirmation of crystallinity. The variation of the photoluminescence intensity with impurity concentration has also been discussed. Thus, prominent emission in the red region makes prepared phosphors more applicable for white light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A series of Ce3+,Mn2+‐coactivated Ca3YNa(PO4)3F phosphors were synthesized via a traditional solid‐state reaction under a reductive atmosphere. X‐Ray powder diffraction was used to confirm that the crystal structure and diffraction peaks of Ce3+/Mn2+‐doped samples matched well with the standard data. A spectral overlap between the emission band of Ce3+ and the excitation band of Mn2+ suggested the occurrence of energy transfer from Ce3+ to Mn2+. With increasing Mn2+ content, the emission intensities and lifetime values of the Ce3+ emission for Ca3YNa(PO4)3F:Ce3+,Mn2+ phosphors linearly decrease, whereas the energy transfer efficiencies gradually increase to 89.35%. By adjusting the relative concentrations of Ce3+ and Mn2+, the emission hues are tuned from blue to white and eventually to yellow. These results suggest that Ca3YNa(PO4)3F:Ce3+,Mn2+ phosphors have promising application as white‐emitting phosphors for near‐ultraviolet light‐emitting diodes.  相似文献   

10.
A series of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors was synthesized via a co‐precipitation method, then their crystal structure, quantum efficiency and luminescent properties were analyzed by XRD and FL, respectively. The results showed that these phosphors not only presented the excitation characteristics of Ba2P2O7:xEu2+,zTb3+, but also exhibited that of the Ba2P2O7:yCe3+,zTb3+ phosphor. Meanwhile, the tri‐doped phosphor showed a stronger absorption around 320 nm in contrast with the Eu2+/Ce3+:Tb3+ co‐doped phosphor. Not only can energy transfer from Ce3+→Eu2+ be observed; the energy transfer mechanism from Eu2+ to Tb3+ is discussed in the tri‐doped system. Ce3+ affects the luminescence properties of Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors just as the sensitizer whereas Eu2+ is considered both as the sensitizer and the activator. The chromaticity coordinates of tri‐doped phosphors excited at 320 nm stayed steadily in the bluish‐white light region,and the emitted color and color temperature (CCT) of these phosphors could be tuned by adjusting the relative contents of Eu2+, Ce3+ and Tb3+. Hence, the single phase Ba2P2O7:xEu2+,yCe3+,zTb3+ phosphors may be considered as potential candidates for white light‐emitting diodes.  相似文献   

11.
This review discusses the photoluminescence (PL) characteristics of halosulfate phosphors developed by us. Halosulfate phosphors KCaSO4Cl:X,Y (X = Eu or Ce; Y = Dy or Mn) and Na6(SO4)2FCl (doped with Dy, Ce or Eu) were prepared using a solid‐state diffusion method. The mechanism of energy transfer from Eu2+→Dy3+, Ce3+→Dy3+ and Ce3+→Mn2+ has also been studied. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows Ce3+ emission at 322 nm due to 5d→4f transition of the Ce3+ ion. The main property of KCaSO4Cl is its very high sensitivity, particularly when doped by Dy, Mn or Pb activators. This review also discusses the PL characteristics of some new phosphors such as LiMgSO4F, Na6Pb4(SO4)6Cl2, Na21Mg(SO4)10Cl3 and Na15(SO4)5F4Cl. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co‐doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg‐free excitation, Ca6AlP5O20:Eu exhibited Eu2+ (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce3+ emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co‐activators of Ce3+ and Mn2+ ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce3+ → Eu2+ and Eu2+ → Mn2+, respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co‐doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, we report the synthesis of Na2Sr1‐x(PO4)F:Eux phosphor via a combustion method. The influence of different annealing temperatures on the photoluminescence properties was investigated. The phosphor was excited at both 254 and 393 nm. Na2Sr1‐x(PO4)F:Eux3+ phosphors emit strong orange and red color at 593 and 612 nm, respectively, under both excitation wavelengths. Na2Sr1‐x(PO4)F:Eux3+ phosphors annealed at 1050°C showed stronger emission intensity compared with 600, 900 and 1200°C. Moreover, Na2Sr1‐x(PO4)F:Eux3+ phosphor was found to be more intense when compared with commercial Y2O3:Eu3+ phosphor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A series of blue phosphors Ca1.98–xMxPO4Cl:0.02Eu2+ (M = Mg and Sr) with different values of x were synthesized using a high‐temperature solid‐state reaction. X‐Ray diffraction and photoluminescence measurements were used to study the phase structure and luminescence properties. Ca2PO4Cl:0.02Eu2+ exhibits a tunable emission intensity and color due to the incorporation of Sr2+ or Mg2+. The incorporation of Sr2+ reduces the luminescence intensity and results in a slight red shift in the emission band. The incorporation of Mg2+ results in enhanced emission and a clear blue shift in the emission band along with a tunable chromatic coordination. Under excitation at λ = 334 nm, the emission intensity of the Mg2+‐doped Ca2PO4Cl:0.02Eu2+ is found to be 250% that of Ca2PO4Cl:0.02Eu2+. The luminescence behaviors of the as‐synthesized phosphors are discussed according to the host crystal structure and site occupancy of Eu2+. The results indicate that Mg2+‐doped Ca2PO4Cl:Eu2+ is more applicable as a near‐UV‐convertible blue phosphor for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A series of Ca2Mg0.25Al1.5Si1.25O7:Ce3+/Eu2+/Tb3+ phosphors was been prepared via a conventional high temperature solid‐state reaction and their luminescence properties were studied. The emission spectra of Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+ and Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Tb3+ phosphors show not only a band due to Ce3+ ions (409 nm) but also as a band due to Eu2+ (520 nm) and Tb3+ (542 nm) ions. More importantly, the effective energy transfer from Ce3+ to Eu2+ and Tb3+ ions was confirmed and investigated by emission/excitation spectra and luminescent decay behaviors. Furthermore, the energy level scheme and energy transfer mechanism were investigated and were demonstrated to be of resonant type via dipole–dipole (Ce3+ to Eu2+) and dipole–quadrupole (Ce3+ to Tb3+) reactions, respectively. Under excitation at 350 nm, the emitting color could be changed from blue to green by adjusting the relative doping concentration of Ce3+ and Eu2+ ions as well as Ce3+ and Tb3+ ions. The above results indicate that Ca2Mg0.25Al1.5Si1.25O7:Ce3+,Eu2+/Tb3+ are promising single‐phase blue‐to‐green phosphors for application in phosphor conversion white‐light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were prepared using the solid‐state reaction method. The crystal structures of the sintered phosphors were of melilite type, which has a tetragonal crystallography. The chemical compositions of the sintered phosphors was confirmed by energy dispersive X‐ray spectroscopy. The different thermoluminescence kinetic parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of these phosphors were evaluated and compared using the peak shape method. Under ultraviolet excitation, the emission spectra of both Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were composed of a broad emission band peaking at 530 nm. When the Ca2MgSi2O7:Eu2+ phosphor is co‐doped with Ce3+ ions, photoluminescence, afterglow and mechanoluminescence intensity was strongly enhanced. Ca2MgSi2O7:Eu2+ showed some afterglow with a short persist time. On incorporation of Ce3+, efficient energy transfer from Ce3+ to Eu2+ was found and the emission intensity of Eu2+ was enhanced. The mechanoluminescence intensities of Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors increased proportionally increased with the increase in impact velocity, which suggests that these phosphors can be used as sensors to detect stress in an object.  相似文献   

17.
The present study investigates the impact of the ligand environment on the luminescence and thermometric behavior of Sm3+ doped A3(PO4)2 (A = Sr, Ca) phosphors prepared by combustion synthesis. The structural and luminescent properties of Sm3+ ions in the phosphate lattices were investigated using powder X-ray diffraction (PXRD) and photoluminescence (PL) techniques. PXRD results of the synthesized phosphors exhibit the expected phases that are in agreement with their respective standards. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of PO4 vibrational bands. Upon excitation with near ultraviolet light, the PL studies indicated that Sr3(PO4)2:Sm3+ phosphors exhibit a yellow light emission, whereas Ca3(PO4)2:Sm3+ phosphors exhibit an emission of orange light. The PL emission results are in accordance with the CIE coordinates, with the Sr3(PO4)2:Sm3+ phosphors showing coordinates of (0.56, 0.44), and the Ca3(PO4)2:Sm3+ phosphors displaying coordinates of (0.60, 0.40). Thermal analysis shows improved stability of Ca3(PO4)2:Sm3+ based on lower weight reduction in thermogravimetric analysis. The effect of temperature on the luminescence properties of the phosphor has been examined upon a 405 nm excitation. By using the fluorescence intensity ratio (FIR) method, the temperature responses of the emission ratios from the Sm3+: the 4F3/26H5/2 transition to the 4G5/26H7/2 and 4F3/26H5/2 transition to the 4G5/26H9/2 emissions are characterized. The Ca3(PO4)2:Sm3+ phosphors are more sensitive as compared with the Sr3(PO4)2:Sm3+ phosphors. The earlier research findings strongly indicate that these phosphors hold great promise as ideal candidates for applications in non-invasive optical thermometry and solid-state lighting devices.  相似文献   

18.
The synthesis, X‐ray diffraction, photoluminescence, TGA/DTA and FTIR techniques in Dy3+ activated Na2Sr(PO4)F phosphor are reported in this paper. The prepared phosphor gave blue, yellow and red emission in the visible region of the spectrum at 348 nm excitation. CIE color co‐ordinates of Na2Sr(PO4)F:Dy3+ are suitable as white light‐emitting phosphors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A series of color‐tunable Ca3–2x‐y‐zSiO4Cl2 (CSC):xCe3+,xLi+,yMn2+,zEu2+ phosphors with low temperature phase structure was synthesized via the sol–gel method. An energy transfer process from Ce3+ to Mn2+ in CSC:0.01Ce3+,0.01Li+,yMn2+ (y = 0.03–0.09) and the mechanism was verified to be an electric dipole–dipole interaction. The Ce3+ and Mn2+ emission intensities were greatly enhanced by co‐doping Eu2+ ions into CSC:0.01Ce3+,0.01Li+,0.07Mn2+ phosphors due to competitive energy transfers from Eu2+/Ce3+ to Mn2+, and Ce3+ to Eu2+. Under 332 nm excitation, CSC:0.01Ce3+,0.01Li+,0.07Mn2+,zEu2+ (z = 0.0005–0.002) exhibited tunable emission colors from green to white with coexisting orange, green and violet‐blue emissions. These phosphors could have potential application in white light‐emitting diodes.  相似文献   

20.
《IRBM》2019,40(5):270-278
BackgroundBreast cancer reported in the young women exhibits high local and distant recurrence and a poor prognosis. Rare earth doped calcium phosphate phosphors have been extensively investigated due to their unique applications in biomedicine.MethodsIn the current study, Tb3+, Ce3+ doped Ca3(PO4)2 phosphor were prepared by hydrothermal method at 150 °C using citric acid as additive and characterized by PXRD, FT-IR, TG-DTA, EDX, TEM and PL techniques. The photoluminescence properties of Tb3+, Ce3+ doped Ca3(PO4)2 phosphor was investigated upon photo excitation at 240 nm. Antiproliferative activity was evaluated by MTT, BrdU proliferation, ELISA, Methylene blue and caspase-3 assays.ResultsCa3(PO4)2:Tb3+, Ce3+ phosphor exhibited needle like morphology with length and width ∼100-500 nm and ∼40-50 nm, respectively. It exhibited green emission at 550 nm corresponding to 5D47F5 transition with the CIE coordinates (x, y) as (0.284, 0.614). It also showed remarkable concentration dependent cytotoxicity against MCF-7 as well as MDA-MB 231 cells with negligible cytotoxicity compared to MCF-12A, a human epithelial healthy cell line. It reduced the proliferative index of both cell lines in a concentration dependent manner by inhibiting DNA synthesis and Ki67 protein. It also induced distinct apoptotic changes in the morphology of cell and nucleus and also activated the caspase-3 activity in breast cancer cell lines.ConclusionThe results suggest that Ca3(PO4)2:Tb3+, Ce3+ phosphor may be useful for therapeutic application in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号