首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
In this study, we determined the complete nucleotide and deduced amino acid sequence of a primary isolate of rabies virus (SH06) obtained from the brain of a rabid dog. The overall length of the genome was 11 924 nucleotides. Comparison of the genomic sequence showed the homology of SH06 at nucleotide level with full-length genomes of reference vaccine strains ranged from 82.2% with the PV strain to 86.9% with the CTN strain. A full-length genome-based phylogenetic analysis was performed with sequences available from GenBank. Phylogenetic analysis of the complete genome sequences indicated that the SH06 exhibited the highest homology with rabies street virus BD06 and CTN vaccine strain originated from China.  相似文献   

2.
3.
The complete nucleotide sequence (5845 nucleotides) of the genomic RNA of the potexvirus white clover mosaic virus (WC1MV) has been determined from a set of overlapping cDNA clones. Forty of the most 5'-terminal nucleotides of WC1MV showed homology to the 5' sequences of other potexviruses. The genome contained five open reading frames which coded for proteins of Mr 147, 417, Mr 26,356, Mr 12,989, Mr 7,219 and Mr 20,684 (the coat protein). The Mr 147,417 protein had domains of amino acid sequence homology with putative polymerases of other RNA viruses. The Mr 26,356 and Mr 12,989 proteins had homology with proteins of the hordeivirus barley stripe mosaic virus RNA beta and the furovirus beet necrotic yellow vein virus (BNYVV) RNA-2. A portion of the Mr 26,356 protein was also conserved in the cylindrical inclusion proteins of two potyviruses. The Mr 7,219 protein had homology with the 25K putative fungal transmission factor of BNYVV RNA-3.  相似文献   

4.
The sequence of about 4,500 nucleotides of the internal part of tobacco mosaic virus (TMV)-tomato strain (L) RNA has been newly determined using cloned cDNAs. Together with the previously determined partial sequences at both ends, the entire sequence of the 6,384 nucleotide genome has been completed. The 130K (1,115 amino acids), 180K (1,615 amino acids), 30K (263 amino acids) and coat protein (158 amino acids) cistrons are located at residues 72-3442, 72-4922, 4906-5700, and 5703-6182 on the genome, respectively. Sequence polymorphism was not observed except for heterogeneity in the length of the A cluster near the 3' end. The homology of the nucleotide sequences of TMV-L and TMV-vulgare, a common strain, is about 80% on average. Remarkable differences between them were found in a part of the N-terminal portion of the 130K/180K protein and the C-terminal portion of the 30K protein. A new method for cDNA cloning was developed by which the cDNA of the 5'-terminus of viral RNA can be cloned efficiently.  相似文献   

5.
Recombinant DNA plasmids containing sequences coding for the alpha subunit of the bovine pituitary glycoprotein hormones have been isolated. The nucleotide sequences of three different cDNA clones have been determined. The largest alpha-subunit cDNA clone was found to contain 713 bases including 77 nucleotides from the 5'-untranslated region, 72 nucleotides coding for a precursor segment, 288 nucleotides coding for the mature alpha subunit, and 276 nucleotides from the 3'-untranslated region of the mRNA followed by a poly(A) segment. This cDNA likely represents most of the bovine alpha-subunit mRNA sequence. Nucleotide sequences were obtained from the cDNA inserts of two other alpha-subunit clones, and several differences among the three cDNA sequences have been detected. These differences in nucleotide sequence may represent either individual variation in genomic sequence or cloning artifacts. Comparison of the bovine alpha-subunit cDNA sequence to the sequences of human, rat, and mouse alpha-subunit cDNAs reveals that the bovine sequence has greater than 70% homology with the other cDNAs. The cloned alpha-subunit cDNA should provide a useful probe for further studies of the structure and expression of this interesting gene.  相似文献   

6.
《DNA research》2008,15(6):333-346
A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome.Key words: EST, full-length cDNA, functional annotation, legume, soybean  相似文献   

7.
8.
9.
10.
Expressed sequence tags of Chinese cabbage flower bud cDNA.   总被引:6,自引:0,他引:6       下载免费PDF全文
C O Lim  H Y Kim  M G Kim  S I Lee  W S Chung  S H Park  I Hwang    M J Cho 《Plant physiology》1996,111(2):577-588
We randomly selected and partially sequenced cDNA clones from a library of Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower bud cDNAs. Out of 1216 expressed sequence tags (ESTs), 904 cDNA clones were unique or nonredundant. Five hundred eighty-eight clones (48.4%) had sequence homology to functionally defined genes at the peptide level. Only 5 clones encoded known flower-specific proteins. Among the cDNAs with no similarity to known protein sequences (628), 184 clones had significant similarity to nucleotide sequences registered in the databases. Among these 184 clones, 142 exhibited similarities at the nucleotide level only with plant ESTs. Also, sequence similarities were evident between these 142 ESTs and their matching ESTs when compared using the deduced amino acid sequences. Therefore, it is possible that the anonymous ESTs encode plant-specific ubiquitous proteins. Our extensive EST analysis of genes expressed in floral organs not only contributes to the understanding of the dynamics of genome expression patterns in floral organs but also adds data to the repertoire of all genomic genes.  相似文献   

11.
Primary structure of a genomic zein sequence of maize.   总被引:13,自引:7,他引:6       下载免费PDF全文
The nucleotide sequence of a genomic clone (termed Z4 ) of the zein multigene family was compared to the nucleotide sequence of related cDNA clones of zein mRNAs. A tandem duplication of a 96-bp sequence is found in the genomic clone that is not present in the related cDNA clones. When the duplication is disregarded, the nucleotide sequence homology between Z4 and its related cDNAs was approximately 97%. The nucleotide sequence is also compared to other isolated cDNAs. No introns in the coding region of the zein gene are detected. The first nucleotide of a putative TATA box, TATAAATA , was located 88 nucleotides upstream of the first nucleotide of the first ATG codon which initiated the open reading frame. The first nucleotide of a putative CCAAT box, CAAAAT , appeared 45 nucleotides upstream of the first nucleotide of the zein cDNA clones in the 3' non-coding region also appeared in the genomic sequence at the same locations. The amino acid composition of the polypeptide specified by the Z4 nucleotide sequence is similar to the known composition of zein proteins.  相似文献   

12.
The complete nucleotide sequence of turnip yellow mosaic virus (TYMV) genomic RNA has been determined on a set of overlapping cDNA clones using a sequential sequencing strategy. The RNA is 6318 nucleotides long, excluding the cap structure. The genome organization deduced from the sequence confirms previous results of in vitro translation. A novel open reading frame (ORF) putatively encoding a Pro-rich and very basic 69K (K = kilodalton) protein is detected at the 5' end of the genome. It is initiated at the first AUG codon on the RNA and overlaps the major ORF that encodes the non structural 206K (previously referred to as 195K) protein of TYMV; its function is unknown. Several amino acid consensus sequences already described among plant and animal viruses are also found in the TYMV-encoded polypeptides. A comparison with other viruses whose RNA sequence is known leads to the conclusion that TYMV belongs to the "Sindbis-like" supergroup of viruses and could be related to Semliki forest virus.  相似文献   

13.
The nucleotide sequences of brome mosaic virus (BMV) RNAs 1 (3234 bases) and 2 (2865 bases) have been determined, completing the primary structure of the 8200 base tripartite BMV genome. cDNA clones covering 99% of BMV RNA1 and a full-length cDNA clone of BMV RNA2 were isolated in the course of this work. Extensive sequence homology and known interaction with several proteins suggest that the 3' ends of the BMV RNAs are the major regulatory regions of the genome. Smaller regions at the 5' ends of RNAs 1 and 2 show strong homology to each other and lesser homology to RNA3. These and other features of the sequences are discussed in relation to replication, regulation and evolution of the BMV genome.  相似文献   

14.
We have been developing a HUGE database to summarize results from the sequence analysis of human novel large (>4 kb) cDNAs identified in the Kazusa cDNA sequencing project, systematically designated KIAA plus a four-digit number. HUGE currently contains nearly 2000 gene/protein characteristic tables harboring the results of the computer-assisted analysis of the cDNA and the predicted protein sequences together with those of expression profiling and chromosomal mapping. In the updated version of HUGE, we made it possible to compare each KIAA cDNA sequence with the corresponding entry in the human draft genome sequence that was published recently. Approximately 90% of KIAA cDNAs in HUGE can be localized along the human genome for at least half or more of the cDNA’s length. Any nucleotide differences between the cDNA and the corresponding genomic sequences are also presented in detail. This new version of HUGE greatly helps us evaluate the completeness of cDNA clones and the accuracy of cDNA/genomic sequences. More interestingly, in some cases, the ability to compare cDNA with genomic sequences allows us to identify candidate sites of RNA editing. HUGE is available on the World Wide Web at http://www.kazusa.or.jp/huge.  相似文献   

15.
Resistance of melon (Cucumis melo L.) to Melon necrotic spot virus (MNSV) is inherited as a single recessive gene, denoted nsv. No MNSV isolates described to date (e.g., MNSV-Malpha5), except for the MNSV-264 strain described here, are able to overcome the resistance conferred by nsv. Analysis of protoplasts of susceptible (Nsv/-) and resistant (nsv/nsv) melon cultivars inoculated with MNSV-264 or MNSV-Malpha5 indicated that the resistance trait conferred by this gene is expressed at the single-cell level. The nucleotide sequence of the MNSV-264 genome has a high nucleotide identity with the sequences of other MNSV isolates, with the exception of its genomic 3'-untranslated region (3'-UTR), where less than 50% of the nucleotides are shared between MNSV-264 and the other two MNSV isolates completely sequenced to date. Uncapped RNAs transcribed from a full-length MNSV-264 cDNA clone were infectious and caused symptoms indistinguishable from those caused by the parental viral RNA. This cDNA clone allowed generation of chimeric mutants between MNSV-264 and MNSV-Malpha5 through the exchange of the last 74 nucleotides of their coat protein (CP) open reading frames and the complete 3'-UTRs. Analysis of protoplasts of susceptible and resistant melon cultivars inoculated with chimeric mutants clearly showed that the MNSV avirulence determinant resides in the exchanged region. The carboxy-termini of the CP of both isolates are identical; therefore, the avirulence determinant likely consists of the RNA sequence itself. We also demonstrated that this genomic region contains the determinant for the unique ability of the isolate MNSV-264 to infect noncucurbit hosts (Nicotiana benthamiana and Gomphrena globosa).  相似文献   

16.
Partial clones for the three cynomolgus monkey (Macaca fasicularis) zona pellucida genes (cmZPA, cmZPB, and cmZPC) have previously been isolated. These partial clones contained the sequences for the C-terminal portion of each rcmZP protein. To obtain full-length clones for each cmZP, a fresh cynomolgus monkey ovarian cDNA library was constructed. PCR methodology was employed to speed the isolation of full-length clones for each cmZP cDNA. The 3' primers were designed based on sequence information from the previously identified clones; the 5' primers were designed using the human ZP sequences. The PCR technique yielded full-length clones of cmZPA and cmZPC, but not of cmZPB. Therefore, a genomic clone of cmZPB was isolated and the sequence determined. The exon/intron structure is nearly identical to the human ZPB exon/intron structure. New PCR primers were designed based on the cynomolgus monkey ZPB genomic sequence, and a full-length cmZPB cDNA was obtained. The same primers that were used to generate the cmZPB were also used to generate a baboon (Papio cynocephalus) ZPB (bZPB) cDNA. As was done previously for the human zona pellucida (hZP) cDNAs, the cmZP, and bZPB cDNAs were transferred to shuttle vectors for transfection into Chinese Hamster Ovary (CHO) cells. Stable cell lines for producing each ZP protein were isolated. Each cell line secreted the desired recombinant zona pellucida (rZP) protein into the culture medium, and each protein was purified using an established protocol. In terms of size and purity, the purified recombinant cmZP (rcmZP) and rbZPB proteins resemble the rhZP proteins.  相似文献   

17.
Monoclonal antibodies directed against the capsid protein of rabbit hemorrhagic disease virus (RHDV) were used to identify field cases of European brown hare syndrome (EBHS) and to distinguish between RHDV and the virus responsible for EBHS. Western blot (immunoblot) analysis of liver extract of an EBHS virus (EBHSV)-infected hare revealed a single major capsid protein species of approximately 60 kDa that shared epitopes with the capsid protein of RHDV. RNA isolated from the liver of an EBHSV-infected hare contained two viral RNA species of 7.5 and 2.2 kb that comigrated with the genomic and subgenomic RNAs of RHDV and were recognized by labeled RHDV cDNA in Northern (RNA) hybridizations. The nucleotide sequence of the 3' 2.8 kb of the EBHSV genome was determined from four overlapping cDNA clones. Sequence analysis revealed an open reading frame that contains part of the putative RNA polymerase gene and the complete capsid protein gene. This particular genome organization is shared by RHDV but not by other known caliciviruses. The deduced amino acid sequence of the capsid protein of EBHSV was compared with the capsid protein sequences of RDDV and other caliciviruses. The amino acid sequence comparisons revealed that EBHSV is closely related to RHDV and distantly related to other caliciviruses. On the basis of their genome organization, it is suggested that caliciviruses be divided into three groups.  相似文献   

18.
19.
Cloning full-length cDNA of grapevine chrome mosaic nepovirus   总被引:3,自引:0,他引:3  
Full-length cDNA copies of the genomic RNAs of grapevine chrome mosaic virus were obtained and cloned in Escherichia coli by a one-step procedure. The cloning protocol included size selections by agarose-gel electrophoresis of both the single-stranded and the double-stranded full-length cDNAs. First-strand cDNA synthesis was primed with oligodeoxythymidine while second-strand synthesis was primed with specific synthetic oligodeoxynucleotides, allowing cloning of the 3' poly(A) and of the last 5' nucleotides of the viral RNA template. For the 7.2-kb and 4.4-kb viral RNAs, up to 20% and 80%, respectively, of the clones were found to be full-length. Even for large templates, this procedure allows fast and efficient cloning of full-length cDNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号