首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaV1.3 L-type channels control inner hair cell (IHC) sensory and sinoatrial node (SAN) function, and excitability in central neurons by means of their low-voltage activation and inactivation properties. In SAN cells CaV1.3 inward calcium current (ICa) inactivates rapidly whereas in IHCs inactivation is slow. A candidate suggested in slowing CaV1.3 channel inactivation is the presynaptically located ribbon-synapse protein RIM that is expressed in immature IHCs in presynaptic compartments also expressing CaV1.3 channels. CaV1.3 channel gating is also modulated by an intramolecular C-terminal mechanism. This mechanism was elicited during analysis of human C-terminal splice variants that differ in the length of their C-terminus and that modulates the channel's negative activation range and slows calcium-dependent inactivation.  相似文献   

2.
Voltage dependent inactivation is an important property of voltage gated calcium channels. Recently, we have reported that 14 3 3 proteins profoundly reduce inactivation of the CaV2.2 channel at both open and closed states. Using a combination of molecular, biochemical and electrophysiological approaches, we have shown that the modulation is mediated by 14 3 3 binding to the carboxyl tail of the CaV2.2 pore forming α1B subunit. In this addendum, we present our new finding that 14 3 3 self dimerization is not required for its modulation of CaV2.2 channel inactivation. These studies will help to understand the molecular mechanism underlying 14 3 3 dependent modulation of CaV2.2 channels.  相似文献   

3.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

4.
Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure–function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.  相似文献   

5.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing these calcium channels. Human CaV2.1 channels showed a complex modal gating, which is described in this and the preceding paper (Luvisetto, S., T. Fellin, M. Spagnolo, B. Hivert, P.F. Brust, M.M. Harpold, K.A. Stauderman, M.E. Williams, and D. Pietrobon. 2004. J. Gen. Physiol. 124:445-461). Here, we report the characterization of the so-called b gating mode. A CaV2.1 channel in the b gating mode shows a bell-shaped voltage dependence of the open probability, and a characteristic low open probability at high positive voltages, that decreases with increasing voltage, as a consequence of both shorter mean open time and longer mean closed time. Reversible transitions of single human CaV2.1 channels between the b gating mode and the mode of gating in which the channel shows the usual voltage dependence of the open probability (nb gating mode) were much more frequent (time scale of seconds) than those between the slow and fast gating modes (time scale of minutes; Luvisetto et al., 2004), and occurred independently of whether the channel was in the fast or slow mode. We show that the b gating mode produces reversible uncoupling of inactivation in human CaV2.1 channels. In fact, a CaV2.1 channel in the b gating mode does not inactivate during long pulses at high positive voltages, where the same channel in both fast-nb and slow-nb gating modes inactivates relatively rapidly. Moreover, a CaV2.1 channel in the b gating mode shows a larger availability to open than in the nb gating modes. Regulation of the complex modal gating of human CaV2.1 channels could be a potent and versatile mechanism for the modulation of synaptic strength and plasticity as well as of neuronal excitability and other postsynaptic Ca2+-dependent processes.  相似文献   

6.
N-type Ca2+ channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca2+ channel complex. Nat. Med. 17, 822–829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388–402), “L1”) and the distal C terminus (CaV1.2(2014–2028) “Ct-dis”) that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs from mice with a heterozygous mutation of Nf1 linked to neurofibromatosis type 1. Ct-dis peptide, administered intraperitoneally, exhibited antinociception in a zalcitabine (2′-3′-dideoxycytidine) model of AIDS therapy-induced and tibial nerve injury-related peripheral neuropathy. This study suggests that CaV peptides, by perturbing interactions with the neuromodulator CRMP2, contribute to suppression of neuronal hypersensitivity and nociception.  相似文献   

7.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels and their modulation by the auxiliary beta1b, beta2e, beta3a, and beta4a subunits were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing human CaV2.1 channels. These calcium channels showed a complex modal gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon. 2004. J. Gen. Physiol. 124:463-474). Here, we report the characterization of two modes of gating of human CaV2.1 channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger depolarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode). CaV2.1 channels containing any of the four beta subtypes can gate in either the slow or the fast mode, with only minor differences in the rate constants of the transitions between closed and open states within each mode. In both modes, CaV2.1 channels display different rates of inactivation and different steady-state inactivation depending on the beta subtype. The type of beta subunit also modulates the relative occurrence of the slow and the fast gating mode of CaV2.1 channels; beta3a promotes the fast mode, whereas beta4a promotes the slow mode. The prevailing mode of gating of CaV2.1 channels lacking a beta subunit is a gating mode in which the channel shows shorter mean open times, longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive voltages than in either the fast or slow mode.  相似文献   

8.
L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned from HIT-T15 cells. In doing so, we compared this neuroendocrine CaV1.3 channel with the cardiac L-type channel CaV1.2a (or alpha1C-a) after expression together with alpha2delta- and beta3-subunits in Xenopus oocytes. Both the current voltage relation and voltage dependence of inactivation for the neuroendocrine CaV1.3 channel were shifted to more negative potentials compared with the cardiac CaV1.2 channel. In addition, the CaV1.3 channel activated and inactivated more rapidly than the CaV1.2a channel. Both subtypes showed a similar sensitivity to the dihydropyridine (+)isradipine. More interestingly, the CaV1.3 channels were found to be stimulated by ligand-bound G(i)/G(o)-coupled GPCRs whereas a neuronal CaV2.2 (or alpha1B) channel was inhibited. The observed receptor-induced stimulation of CaV1.3 channels could be mimicked by phorbol-12-myristate-13-acetate and was sensitive to inhibitors of protein kinases, but not to the phosphoinositol-3-kinase-inhibitor wortmannin, pointing to serine/threonine kinase-dependent regulation. Taken together, we describe a neuroendocrine L-type CaV1.3 calcium channel that is stimulated by G(i)/G(o)-coupled GPCRs and differs significantly in distinct biophysical characteristics from the cardiac subtype (CaV1.2a), suggesting that the channels have different roles in native cells.  相似文献   

9.
Voltage-dependent inactivation of CaV2.3 channels was investigated using point mutations in the beta-subunit-binding site (AID) of the I-II linker. The quintuple mutant alpha1E N381K + R384L + A385D + D388T + K389Q (NRADK-KLDTQ) inactivated like the wild-type alpha1E. In contrast, mutations of alpha1E at position R378 (position 5 of AID) into negatively charged residues Glu (E) or Asp (D) significantly slowed inactivation kinetics and shifted the voltage dependence of inactivation to more positive voltages. When co-injected with beta3, R378E inactivated with tau(inact) = 538 +/- 54 ms (n = 14) as compared with 74 +/- 4 ms (n = 21) for alpha1E (p < 0.001) with a mid-potential of inactivation E(0.5) = -44 +/- 2 mV (n = 10) for R378E as compared with E(0.5) = -64 +/- 3 mV (n = 9) for alpha1E. A series of mutations at position R378 suggest that positively charged residues could promote voltage-dependent inactivation. R378K behaved like the wild-type alpha1E whereas R378Q displayed intermediate inactivation kinetics. The reverse mutation E462R in the L-type alpha1C (CaV1.2) produced channels with inactivation properties comparable to alpha1E R378E. Hence, position 5 of the AID motif in the I-II linker could play a significant role in the inactivation of Ca(V)1.2 and CaV2.3 channels.  相似文献   

10.
N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, G(O alpha), G beta and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.  相似文献   

11.
L-type calcium currents conducted by CaV1.2 channels initiate excitation-contraction coupling in cardiac and vascular smooth muscle. In the heart, the distal portion of the C terminus (DCT) is proteolytically processed in vivo and serves as a noncovalently associated autoinhibitor of CaV1.2 channel activity. This autoinhibitory complex, with A-kinase anchoring protein-15 (AKAP15) bound to the DCT, is hypothesized to serve as the substrate for β-adrenergic regulation in the fight-or-flight response. Mice expressing CaV1.2 channels with the distal C terminus deleted (DCT-/-) develop cardiac hypertrophy and die prematurely after E15. Cardiac hypertrophy and survival rate were improved by drug treatments that reduce peripheral vascular resistance and hypertension, consistent with the hypothesis that CaV1.2 hyperactivity in vascular smooth muscle causes hypertension, hypertrophy, and premature death. However, in contrast to expectation, L-type Ca2+ currents in cardiac myocytes from DCT-/- mice were dramatically reduced due to decreased cell-surface expression of CaV1.2 protein, and the voltage dependence of activation and the kinetics of inactivation were altered. CaV1.2 channels in DCT-/- myocytes fail to respond to activation of adenylyl cyclase by forskolin, and the localized expression of AKAP15 is reduced. Therefore, we conclude that the DCT of CaV1.2 channels is required in vivo for normal vascular regulation, cell-surface expression of CaV1.2 channels in cardiac myocytes, and β-adrenergic stimulation of L-type Ca2+ currents in the heart.  相似文献   

12.
Sun HS  Hui K  Lee DW  Feng ZP 《Biophysical journal》2007,93(4):1175-1183
The essential cation zinc (Zn2+) blocks voltage-dependent calcium channels in several cell types, which exhibit different sensitivities to Zn2+. The specificity of the Zn2+ effect on voltage-dependent calcium channel subtypes has not been systematically investigated. In this study, we used a transient protein expression system to determine the Zn2+ effect on low- and high-voltage activated channels. We found that in Ba2+, the IC50 value of Zn2+ was alpha1-subunit-dependent with lowest value for CaV1.2, and highest for CaV3.1; the sensitivity of the channels to Zn2+ was approximately ranked as CaV1.2>CaV3.2>CaV2.3>CaV2.2=CaV 2.1>or=CaV3.3=CaV3.1. Although the CaV2.2 and CaV3.1 channels had similar IC50 for Zn2+ in Ba2+, the CaV2.2, but not CaV3.1 channels, had approximately 10-fold higher IC50 to Zn2+ in Ca2+. The reduced sensitivity of CaV2.2 channels to Zn2+ in Ca2+ was partially reversed by disrupting a putative EF-hand motif located external to the selectivity filter EEEE locus. Thus, our findings support the notion that the Zn2+ block, mediated by multiple mechanisms, may depend on conformational changes surrounding the alpha1 pore regions. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of zinc on various Ca2+ channel subtypes.  相似文献   

13.
N-type voltage-dependent calcium channels (VDCCs) play determining roles in calcium entry at sympathetic nerve terminals and trigger the release of the neurotransmitter norepinephrine. The accessory beta3 subunit of these channels preferentially forms N-type channels with a pore-forming CaV2.2 subunit. To examine its role in sympathetic nerve regulation, we established a beta3-overexpressing transgenic (beta3-Tg) mouse line. In these mice, we analyzed cardiovascular functions such as electrocardiography, blood pressure, echocardiography, and isovolumic contraction of the left ventricle with a Langendorff apparatus. Furthermore, we compared the cardiac function with that of beta3-null and CaV2.2 (alpha1B)-null mice. The beta3-Tg mice showed increased expression of the beta3 subunit, resulting in increased amounts of CaV2.2 in supracervical ganglion (SCG) neurons. The beta3-Tg mice had increased heart rate and enhanced sensitivity to N-type channel-specific blockers in electrocardiography, blood pressure, and echocardiography. In contrast, cardiac atria of the beta3-Tg mice revealed normal contractility to isoproterenol. Furthermore, their cardiac myocytes showed normal calcium channel currents, indicating unchanged calcium influx through VDCCs. Langendorff heart perfusion analysis revealed enhanced sensitivity to electric field stimulation in the beta3-Tg mice, whereas beta3-null and Cav2.2-null showed decreased responsiveness. The plasma epinephrine and norepinephrine levels in the beta3-Tg mice were significantly increased in the basal state, indicating enhanced sympathetic tone. Electrophysiological analysis in SCG neurons of beta3-Tg mice revealed increased calcium channel currents, especially N- and L-type currents. These results identify a determining role for the beta3 subunit in the N-type channel population in SCG and a major role in sympathetic nerve regulation.  相似文献   

14.
Biochemical and physiological evidence suggest that pre‐synaptic calcium channels are attached to the transmitter release site within the active zone by a molecular tether. A recent study has proposed that ‘Rab3a Interacting Molecule’ (RIM) serves as the tether for CaV2.1 channels in mouse brain, based in part on biochemical co‐immunoprecipitation (co‐IP) using a monoclonal antibody, mRIM. We previously argued against this idea for CaV2.2 calcium channel at chick synapses based on experiments using a different anti‐RIM antibody, pRIM1,2: while staining for the two proteins co‐localized and co‐varied at the transmitter release face, consistent with an association, they failed to co‐IP from a synaptosome membrane lysate. RIM is, however, a family of proteins and we tested the possibility that the mRIM antibody used in the more recent study identifies a particular channel‐tethering variant. We find that co‐immunostaining with mRIM and anti‐CaV2.2 antibody neither co‐localized nor co‐varied at the transmitter release face and the two proteins did not co‐IP, arguing against a common protein complex and a key CaV2.2 scaffolding role for RIM at the active zone. The differing results might be reconciled, however, in a model where a RIM family member contributes to a protein bridge that anchors the pre‐fusion secretory vesicle to the calcium channel protein complex.  相似文献   

15.
Weick M  Demb JB 《Neuron》2011,71(1):166-179
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization.  相似文献   

16.
The lack of a calcium channel agonist (e.g., BayK8644) for CaV2 channels has impeded their investigation. Roscovitine, a potent inhibitor of cyclin-dependent kinases 1, 2, and 5, has recently been reported to slow the deactivation of P/Q-type calcium channels (CaV2.1). We show that roscovitine also slows deactivation (EC(50) approximately 53 microM) of N-type calcium channels (CaV2.2) and investigate gating alterations induced by roscovitine. The onset of slowed deactivation was rapid ( approximately 2 s), which contrasts with a slower effect of roscovitine to inhibit N-current (EC(50) approximately 300 microM). Slow deactivation was specific to roscovitine, since it could not be induced by a closely related cyclin-dependent kinase inhibitor, olomoucine (300 microM). Intracellularly applied roscovitine failed to slow deactivation, which implies an extracellular binding site. The roscovitine-induced slow deactivation was accompanied by a slight left shift in the activation-voltage relationship, slower activation at negative potentials, and increased inactivation. Additional data showed that roscovitine preferentially binds to the open channel to slow deactivation. A model where roscovitine reduced a backward rate constant between two open states was able to reproduce the effect of roscovitine on both activation and deactivation.  相似文献   

17.
CaV2.1 channels, which conduct P/Q-type Ca2+ currents, initiate synaptic transmission at most synapses in the central nervous system. Ca2+/calmodulin-dependent facilitation and inactivation of these channels contributes to short-term facilitation and depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin (CaM) from its binding site, differentially regulate CaV2.1 channels, and contribute to the diversity of short-term synaptic plasticity. The neuronal calcium sensor protein visinin-like protein 2 (VILIP-2) inhibits inactivation and enhances facilitation of CaV2.1 channels. Here we examine the molecular determinants for differential regulation of CaV2.1 channels by VILIP-2 and CaM by construction and functional analysis of chimeras in which the functional domains of VILIP-2 are substituted in CaM. Our results show that the N-terminal domain, including its myristoylation site, the central α-helix, and the C-terminal lobe containing EF-hands 3 and 4 of VILIP-2 are sufficient to transfer its regulatory properties to CaM. This regulation by VILIP-2 requires binding to the IQ-like domain of CaV2.1 channels. Our results identify the essential molecular determinants of differential regulation of CaV2.1 channels by VILIP-2 and define the molecular code that these proteins use to control short-term synaptic plasticity.  相似文献   

18.
Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca (2+) -dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneously firing cells: low-threshold, steep voltage-dependence of activation and slow inactivation. By using CaV1 .3 (-/-) KO mice and the AP-clamp it has been possible to resolve the time course of CaV1.3 pacemaker currents, which is similar to that regulating substantia nigra dopaminergic neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-inactivating BK channels within membrane nanodomains and controls AP repolarization. The ability to carry subthreshold Ca (2+) currents and activate BK channels confers to CaV1.3 the unique feature of driving Ca (2+) loading during long interspike intervals and, possibly, to control the Ca (2+) -dependent exocytosis and endocytosis processes that regulate catecholamine secretion and vesicle recycling.  相似文献   

19.
E F Stanley 《Neuron》1991,7(4):585-591
The calyx-type synapse of the chick ciliary ganglion was used to examine single calcium channels in a vertebrate cholinergic presynaptic nerve terminal by means of the cell-attached, patch-clamp technique. Calcium channels were recorded on the internal, transmitter-release face of the nerve terminal, but were not detected on the external face. These channels were recruited at -30 mV, with maximum activation at about +30 mV, and were sometimes clustered at high densities. Single-channel conductance estimates with voltage-pulse or -ramp techniques gave values of 11-14 pS with 110 mM barium, which is in the intermediate, N-type range for calcium channels on a control neuron. This nerve terminal calcium channel, termed the NPT-type, may link action potentials to transmitter release at many vertebrate fast-transmitting synapses.  相似文献   

20.
The direct inhibition of N- and P/Q-type calcium channels by G protein betagamma subunits is considered a key mechanism for regulating presynaptic calcium levels. We have recently reported that a number of features associated with this G protein inhibition are dependent on the G protein beta subunit isoform (Arnot, M. I., Stotz, S. C., Jarvis, S. E., Zamponi, G. W. (2000) J. Physiol. (Lond.) 527, 203-212; Cooper, C. B., Arnot, M. I., Feng, Z.-P., Jarvis, S. E., Hamid, J., Zamponi, G. W. (2000) J. Biol. Chem. 275, 40777-40781). Here, we have examined the abilities of different types of ancillary calcium channel beta subunits to modulate the inhibition of alpha(1B) N-type calcium channels by the five known different Gbeta subunit subtypes. Our data reveal that the degree of inhibition by a particular Gbeta subunit is strongly dependent on the specific calcium channel beta subunit, with N-type channels containing the beta(4) subunit being less susceptible to Gbetagamma-induced inhibition. The calcium channel beta(2a) subunit uniquely slows the kinetics of recovery from G protein inhibition, in addition to mediating a dramatic enhancement of the G protein-induced kinetic slowing. For Gbeta(3)-mediated inhibition, the latter effect is reduced following site-directed mutagenesis of two palmitoylation sites in the beta(2a) N-terminal region, suggesting that the unique membrane tethering of this subunit serves to modulate G protein inhibition of N-type calcium channels. Taken together, our data suggest that the nature of the calcium channel beta subunit present is an important determinant of G protein inhibition of N-type channels, thereby providing a possible mechanism by which the cellular/subcellular expression pattern of the four calcium channel beta subunits may regulate the G protein sensitivity of N-type channels expressed at different loci throughout the brain and possibly within a neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号