首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Vesicle <--> micelle transitions are important phenomena during bile formation and intestinal lipid processing. The hepatocyte canalicular membrane outer leaflet contains appreciable amounts of phosphatidylcholine (PC) and sphingomyelin (SM), and both phospholipids are found in the human diet. Dietary SM enrichment inhibits intestinal cholesterol absorption. We therefore studied detergent-induced vesicle --> micelle transitions in SM-PC vesicles. Phase transitions were evaluated by spectrophotometry and cryotransmission electron microscopy (cryo-TEM) after addition of taurocholate (3-7 mM) to SM-PC vesicles (4 mM phospholipid, SM/PC 40%/60%, without or with 1.6 mM cholesterol). After addition of excess (5-7 mM) taurocholate, SM-PC vesicles were more sensitive to micellization than PC vesicles. As shown by sequential cryo-TEM, addition of equimolar (4 mM) taurocholate to SM-PC vesicles induced formation of open vesicles, then (at the absorbance peak) fusion of bilayer fragments into large open structures (around 200 nm diameter) coexisting with some multilamellar or fused vesicles and thread-like micelles and, finally, transformation into an uniform picture with long thread-like micelles. Incorporation of cholesterol in the SM/PC bilayer changed initial vesicular shape from spherical into ellipsoid and profoundly increased detergent resistance. Disk-like micelles and multilamellar vesicles, and then extremely large vesicular structures, were observed by sequential cryo-TEM under these circumstances, with persistently increased absorbance values by spectrophotometry. These findings may be relevant for bile formation and intestinal lipid processing. Inhibition of intestinal cholesterol absorption by dietary SM enrichment may relate to high resistance against bile salt-induced micellization of intestinal lipids in presence of the sphingolipid.  相似文献   

2.
To examine physical-chemical aspects of bile salt-phospholipid interactions that could contribute to preferential phosphatidylcholine (PC) secretion into bile, we have compared transitions between vesicles and micelles in model systems containing taurocholate (TC) and either egg-yolk PC (EYPC), egg-yolk sphingomyelin (EYSM), buttermilk SM (BMSM) or dipalmitoyl PC (DPPC). Phase transitions from micelles to vesicles were observed at 4-fold dilution of serially diluted EYPC/TC systems, but not earlier than at 16-fold dilution of SM/TC or DPPC/TC systems, indicating lower concentrations of the detergent required for micellization in the case of SM or DPPC. Cryo-transmission electron microscopy of phase transitions initiated by addition of TC to phospholipid vesicles revealed extremely long SM-containing intermediate structures, but shorter EYPC-containing intermediate structures. Again, larger amounts of bile salt were required to induce phase transitions in the case of EYPC compared to SM. Sizes of TC-phospholipid micelles increased progressively upon increasing phospholipid contents in the rank order: DPPC-TC相似文献   

3.
Class III P-glycoproteins (Pgps) mediate biliary phosphatidylcholine (PC) secretion. Recent findings that class I P-glycoproteins are able to transport several short-chain phospholipid analogues raises questions about the role of these Pgps in physiological lipid transport. We investigated the biliary secretion of C6-7-nitro-2,1, 3-benzoxadiazol-4-yl (NBD)-labeled ceramide and its metabolites in Mdr1a/b and Mdr2 knockout mice compared to control mice. Biliary secretion of these NBD-lipids was unaffected in Mdr1a/b -/- mice. Thus neither Mdr1a nor Mdr1b Pgp mediates biliary secretion of these lipids. In contrast, secretion of all three NBD-labeled short-chain phospholipids was significantly reduced in Mdr2 -/- mice. As in vitro studies revealed that Mdr2 Pgp is not able to translocate these lipid analogues, we hypothesized that Mdr2 -/- mice had a reduced PC content of the exoplasmic canalicular membrane leaflet so that extraction of the short-chain lipid probes from this membrane by canalicular bile salts was impaired. To investigate this possibility we studied the bile salt-mediated extraction of natural sphingomyelin (SM) and NBD-labeled short-chain SM from small unilamellar vesicles of different lipid composition. Natural SM could be extracted by the bile salt tauroursodeoxycholate from vesicles containing PC, cholesterol (CHOL), and SM (1:2:2) but not from vesicles containing only SM and CHOL (3:2). NBD-labeled short-chain SM could be extracted from vesicles containing PC while its extraction from pure SM:CHOL vesicles was reduced by 65%.These data confirm that the efficiency of NBD-SM extraction depends on the lipid composition and suggest that the canalicular membrane outer leaflet of Mdr2 -/- mice has a reduced PC content.  相似文献   

4.
Inclusion of phosphatidylcholine within bile salt micelles protects against bile salt-induced cytotoxicity. In addition to phosphatidylcholine, bile may contain significant amounts of sphingomyelin, particularly under cholestatic conditions. We compared protective effects of egg yolk phosphatidylcholine (similar to phosphatidylcholine in bile), egg yolk sphingomyelin (mainly 16:0 acyl chains) and dipalmitoyl phosphatidylcholine against taurocholate in complementary in vitro studies. Upon addition of taurocholate-containing micelles to sonicated egg yolk phosphatidylcholine vesicles, subsequent micellization of the vesicular bilayer proved to be retarded when phospholipids had also been included in these micelles in the rank order: egg yolk phosphatidylcholine < dipalmitoyl phosphatidylcholine < sphingomyelin. Hemolysis of erythrocytes and LDH release by CaCo-2 cells after addition of taurocholate micelles were strongly reduced by including small amounts of sphingomyelin or dipalmitoyl phosphatidylcholine in these micelles (PL/(PL + BS) >/= 0.1), whereas egg yolk phosphatidylcholine provided less protection. Amounts of non-phospholipid-associated bile salts (thought to be responsible for cytotoxicity) in egg yolk phosphatidylcholine-containing micelles were significantly higher than in corresponding sphingomyelin- or dipalmitoyl phosphatidylcholine-containing micelles (tested at PL/(PL + BS) ratios 0.1, 0.15, and 0.2). LDH release upon incubation of CaCo-2 cells with taurocholate simple micelles at these so-called "intermixed micellar-vesicular" concentrations was identical to LDH release upon incubation with corresponding taurocholate-phospholipid mixed micelles. In conclusion, we found greatly enhanced protective effects of sphingomyelin and dipalmitoyl phosphatidylcholine compared to egg yolk phosphatidylcholine against bile salt-induced cytotoxicity, related to different amounts of non-phospholipid-associated bile salts. These findings may be relevant for protection against bile salt-induced cytotoxicity in vivo.  相似文献   

5.
We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The rates of [14C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. The phospholipids included unsaturated phosphatidylcholines (PC's) (egg PC, dioleoyl-PC, and soybean PC), saturated PC (dimyristoyl-PC and dipalmitoyl-PC), and sphingomyelins (SM's) (egg SM, bovine brain SM, and N-palmitoyl-SM). At 37 degrees C, for vesicles containing 10 mol% cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC greater than saturated PC greater than SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4-13C]cholesterol reveal no differences in molecular dynamics in the above bilayers. Surface pressure (pi)-molecular area isotherms for mixed monolayers of cholesterol and the above phospholipids reveal that SM lateral packing density is greater than that of the PC with the same acyl chain saturation and length (e.g., at pi = 5 mN/m, where both monolayers are in the same physical state, dipalmitoyl-PC and palmitoyl-SM occupy 87 and 81 A2/molecule, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The uptake of radioactive cholesterol and sitosterol by rat jejunal villus cells was examined using mixed micellar solutions containing sodium taurocholate, equimolar mixtures of the two sterols, and a variety of phospholipid types. The addition of phospholipid to the incubation solutions reduced the cellular absorption of both sterols and gave rise to uptake kinetics that were linear with time. In the presence of egg yolk phospholipid, uptake of the sterols by villus cells occurred with a modest preference for cholesterol over sitosterol. The ratio of accumulated cholesterol/sitosterol increased from 1.0 initially to 1.23 +/- 0.04 (n = 18) after a 30-min incubation at 37 degrees C. The selectivity displayed in the villus cells increased significantly as egg phosphatidylethanolamine was added to the egg phosphatidylcholine (PC) preparation in micellar solution. It was markedly decreased when dipalmitoyl PC or the primarily saturated egg yolk sphingomyelin were incorporated into the micelles. In every case examined, phospholipid was taken up by the cells concurrently with the sterols. The selectivity between cholesterol and sitosterol was maintained when the donor species were multilamellar vesicles composed of egg PC and the sterols, but not when the donor particles were albumin-stabilized sterol dispersions or taurocholate solutions in the absence of PC. The results show that the selective absorption of cholesterol over the plant sterol occurs only in the presence of unsaturated phospholipid. The phospholipid may act by influencing the permeability of the cellular membranes to the two sterols or the rate of sterol desorption from the phospholipid-containing micellar or liposomal carriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A series of one- and two-dimensional 1H-NMR relaxation measurements has been conducted on simple and mixed micellar aggregates of taurocholate, diphenylvaleroylphosphatidylcholine (diPVPC) and egg yolk phosphatidylcholine (egg PC). The results are interpreted to provide structural and dynamic comparisons between micelles and vesicles, between phospholipids of varying chain length, and between different lipid components within the same micellar aggregate. Both chemical shift changes and two-dimensional nuclear Overhauser effect cross peaks suggest direct interaction of taurocholate and PC chemical sites, although the latter observations may also be accounted for by PC-PC interactions. These experiments demonstrate the promise of NMR relaxation techniques for investigations of molecular organization in model substrate for lipolytic enzymes.  相似文献   

9.
Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains.  相似文献   

10.
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells.  相似文献   

11.
We modified classic equilibrium dialysis methodology to correct for dialysant dilution and Donnan effects, and have systematically studied how variations in total lipid concentration, bile salt (taurocholate):lecithin (egg yolk) ratio, and cholesterol content influence inter-mixed micellar/vesicular (non-lecithin-associated) concentrations (IMC) of bile salts (BS) in model bile. To simulate large volumes of dialysant, the total volume (1 ml) of model bile was exchanged nine times during dialysis. When equilibrium was reached, dialysate BS concentrations plateaued, and initial and final BS concentrations in the dialysant were identical. After corrections for Donnan effects, IMC values were appreciably lower than final dialysate BS concentrations. Quasielastic light scattering was used to validate these IMC values by demonstrating that lipid particle sizes and mean scattered light intensities did not vary when model biles were diluted with aqueous BS solutions of the appropriate IMC. Micelles and vesicles were separated from cholesterol-supersaturated model bile, utilizing high performance gel chromatography with an eluant containing the IMC. Upon rechromatography of micelles and vesicles using an identical IMC, there was no net transfer of lipid between micelles and vesicles. To simulate dilution during gel filtration, model biles were diluted with 10 mM Na cholate, the prevailing literature eluant, resulting in net transfer of lipid between micelles and vesicles, the direction of which depended upon total lipid concentration and BS/lecithin ratio. Using the present methodology, we demonstrated that inter-mixed micellar/vesicular concentrations (IMC) values increased strongly (5 to 40 mM) with increases in both bile salt (BS):lecithin ratio and total lipid concentration, whereas variations in cholesterol content had no appreciable effects. For model biles with typical physiological biliary lipid compositions, IMC values exceeded the critical micellar concentration of the pure BS, implying that in cholesterol-supersaturated biles, simple BS micelles coexist with mixed BS/lecithin/cholesterol micelles and cholesterol/lecithin vesicles. We believe that this methodology allows the systematic evaluation of IMC values, with the ultimate aim of accurately separating micellar, vesicular, and potential other cholesterol-carrying particles from native bile.  相似文献   

12.
The glucose transport system, isolated from rat adipocyte membrane fractions, was reconstituted into phospholipid vesicles. Vesicles composed of crude egg yolk phospholipids, containing primarily phosphatidylcholine (PC) and phosphatidylethanolamine (PE), demonstrated specific d-glucose uptake. Purified vesicles made of PC and PE also supported such activity but PC or PE by themselves did not. The modulation of this uptake activity has been studied by systematically altering the lipid composition of the reconstituted system with respect to: (1) polar headgroups; (2) acyl chains, and (3) charge. Addition of small amounts (20 mol%) of PS, phosphatidylinositol (PI), cholesterol, or sphingomyelin significantly reduced glucose transport activity. A similar effect was seen with the charged lipid, phosphatidic acid. In the case of PS, this effect was independent of the acyl chain composition. Polar headgroup modification of PE, however, did not appreciably affect transport activity. Free fatty acids, on the other hand, increased or decreased activity based on the degree of saturation and charge. These results indicate that glucose transport activity is sensitive to specific alterations in both the polar headgroup and acyl chain composition of the surrounding membrane lipids.  相似文献   

13.
Bile is the route for elimination of cholesterol from the body. Recent studies have begun to elucidate hepatocellular, molecular and physical-chemical mechanisms whereby bile salts stimulate biliary secretion of cholesterol together with phospholipids, which are enriched (up to 95%) in phosphatidylcholines. Active translocation of bile salts and phosphatidylcholines across the hepatocyte's canalicular plasma membrane provides the driving force for biliary lipid secretion. This facilitates physical-chemical interactions between detergent-like bile salt molecules and the ectoplasmic leaflet of the canalicular membrane, which result in biliary secretion of cholesterol and phosphatidylcholines as vesicles. Within the hepatocyte, separate molecular pathways function to resupply bile salts, phosphatidylcholines and cholesterol to the canalicular membrane for ongoing biliary lipid secretion.  相似文献   

14.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

15.
The rates of exchange of [4-14C]cholesterol between lipid vesicles prepared with different phospholipids and with different sizes have been measured. The first-order rate constants were higher using vesicles prepared from phosphatidylcholines with highly branched or polyunsaturated fatty acyl chains than with saturated diacyl or di-O-alkyl chains. The rate measurements indicate that the affinity of cholesterol for phospholipid does not vary significantly on change of the type of linkage (ether or ester) in phosphatidylcholine (PC) or of the positions of the fatty acyl chains in 1,2-diacyl-PC bearing one saturated and one unsaturated chain; furthermore, egg phosphatidylglycerol and egg phosphatidylethanolamine appear to have comparable affinities for cholesterol. However, the molecular packing in the bilayer and nearest-neighbor interactions involving cholesterol appear tightened more by N-palmitoylsphingomyelin than by dipalmitoyl-PC; on incorporation of 44 mol % of these phospholipids (which have the same fatty acyl chain composition) into either small or large unilamellar vesicles prepared with egg phosphatidylglycerol, the exchange rates were strikingly slower when the donor species contained sphingomyelin compared with PC. The rate of cholesterol exchange was 100% faster with small unilamellar vesicles than with large unilamellar vesicles as donors, suggesting that the looser packing in the highly curved small vesicles facilitates cholesterol desorption. The cholesterol exchange rate did not vary with the size of the acceptor vesicles, which indicates that desorption is the rate-limiting step in the exchange process in the presence of excess acceptors.  相似文献   

16.
ABCB4/MDR3 is located in the canalicular membrane of hepatocytes and translocates PC-lipids from the cytoplasmic to the extracellular leaflet. ABCB4 is an ATP-dependent transporter that reduces the harsh detergent effect of the bile salts by counteracting self-digestion. To do so, ABCB4 provides PC lipids for extraction into bile. PC lipids account for 40% of the entire pool of lipids in the canalicular membrane with an unknown distribution over both leaflets. Extracted PC lipids end up in so-called mixed micelles. Mixed micelles are composed of phospholipids, bile salts, and cholesterol. Ninety to ninety-five percent of the phospholipids are members of the PC family, but only a subset of mainly 16.0-18:1 PC and 16:0-18:2 PC variants are present. To elucidate whether ABCB4 is the key discriminator in this enrichment of specific PC lipids, we used in vitro studies to identify crucial determinants in substrate selection. We demonstrate that PC-lipid moieties alone are insufficient for stimulating ABCB4 ATPase activity, and that at least two acyl chains and the backbone itself are required for a productive interaction. The nature of the fatty acids, like length or saturation has a quantitative impact on the ATPase activity. Our data demonstrate a two-step enrichment and protective function of ABCB4 to mitigate the harsh detergent effect of the bile salts, because ABCB4 can translocate more than just the PC-lipid variants found in bile.  相似文献   

17.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The partitioning of phosphatidylcholine (PC) molecular species between mixed micelles and vesicles was studied in each of seven human gallbladder biles. Biles were fractionated by Sephacryl S-300 SF gel filtration chromatography, and PC species in the micellar and vesicular fractions were quantitated by high performance liquid chromatography. Micelles were enriched in species containing unsaturated acyl groups (e.g., 16:1-18:2, 18:1-18:2, and 18:1-18:3); vesicles were enriched in more highly saturated species (e.g., 16:0-16:1, 16:0-18:1, and 18:0-18:1). Separate multivariate analyses for each bile demonstrated that the distribution of PC species between vesicles and micelles was related to the degree of sn-1 and sn-2 unsaturation, and sn-1, but not sn-2, chain length. In addition, the tendency to partition into the micellar phase was particularly marked when unsaturation was present at both the sn-1 and sn-2 positions. When this interaction was included in the multivariate analyses, the regression models accounted for virtually all of the variation in PC partitioning (for each of the seven patients r2 = 0.92-0.98, P less than 0.03). These results suggest that the partitioning of PC species between micelles and vesicles is strictly determined by sn-1 chain length and the degree of unsaturation at both the sn-1 and sn-2 positions. In light of recent reports that fatty acyl composition influences the cholesterol content of vesicles and micelles in model biles, these results raise the possibility that diet-induced alterations in the phospholipid species and the relative proportions of biliary lipid particles may influence the cholesterol-carrying capacity of bile.  相似文献   

19.
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.  相似文献   

20.
The effect of the bacterial cytolytic toxin, streptolysin S, on liposomes composed of various phospholipids was investigated. Large unilamellar vesicles containing [14C]sucrose were prepared by reverse-phase evaporation, and membrane damage produced by the toxin was measured by following the release of labeled marker. The net charge of the liposomes had little or no effect on their susceptibility to steptolysin S and the toxin was about equally effective on liposomes composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylglycerol. Experiments with liposomes composed of synthetic phospholipids showed that the ability of the toxin to produce membrane damage depended on the degree of unsaturation of the fatty acyl chains. The order of sensitivity was C18 : 2 phosphatidylcholine greater than C18: I phosphatidylcholine greater than C18 : 0 phosphatidylcholine = C16 : 0 phosphatidylcholine. Liposomes containing the latter two phospholipids were virtually unaffected by streptolysin S, and experiments with C18 : 0 phosphatidylcholine suggested that toxin activity does not bind to liposomes composed of phospholipids with saturated fatty acyl chains. The inclusion of 40 mol% cholesterol in C16 : 0 phosphatidylcholine and C18 : 0 phosphatidylcholine liposomes made these vesicles sensitive to streptolysin S. Egg phosphatidylcholine liposomes, which were unaffected at 0 degrees C and 4 degrees C became susceptible to the toxin at these temperatures when cholesterol was included. Liposomes composed of C14 : 0 phosphatidylcholine were unaffected by streptolysin S at temperatures below the chain-melting transition temperature (23 degrees C) of this phospholipid, but became increasingly susceptible above this temperature. The results suggest that the fluidity of the phospholipid hydrocarbon chains in the membrane is important in streptolysin S action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号