首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dietary vitamin E deficiency on mouse cerebral membrane order and oxygen reactive species were studied. Quantitation of vitamin E levels in several brain regions showed greatest deficiencies in striatum and cerebellum, followed by substantia nigra, and cortex. Vitamin E deficiency increased central-core membrane order in cerebral P2 fraction, but was without effect in the superficial hydrophilic membrane domain. Oxygen radical formation was studied using the probe 2',7'-dichlorofluorescein diacetate. Basal generation rates of oxygen reactive species were 2.5-fold higher when compared to control animals. While hepatic levels of vitamin E are much more reduced than brain levels, in deficient mice, the rate of oxygen radical formation in the liver was unaltered. This implies an special susceptibility of the brain to deficiency of this lipophilic antioxidant vitamin. Data demonstrate that endogenous levels of free radical scavengers, such as vitamin E, may play an important role in maintaining basal oxygen radical levels and membrane integrity. The dietary vitamin E depletion paradigm suggests that a relation exists between elevated levels of oxygen radicals and more rigid hydrophobic central-cores in cerebral membranes, effects that may play a role in mechanisms underlying the neuropathologic lesions observed following vitamin E deficiency.  相似文献   

2.
Our previous reports show that apolipoprotein E (apoE) influences the dynamics of alpha tocopherol (vitamin E) in brain. In this investigation, the patterns of depletion of alpha tocopherol from tissues of apoE deficient and wild type mice were compared after the animals were fed vitamin E deficient diets. Alpha tocopherol concentrations in specific regions of the brain and peripheral tissues at different times were determined by HPLC with electrochemical detection. ApoE deficiency significantly retarded the rate of depletion of alpha tocopherol from all regions of the brain. In addition, comparison of the rates of depletion of alpha tocopherol in both apoE deficient and wild type animals showed that cerebellum behaved differently from other areas such as cortex, hippocampus and striatum. This reinforces the uniqueness of cerebellum with regard to vitamin E biology. Patterns of depletion of tocopherol from peripheral tissues were different from brain. Serum tocopherol was higher in apoE deficient animals and remained higher than wild type during E deficiency. Depletion of liver tocopherol also tended to be unaffected by apoE deficiency. Our current and previous observations strongly suggest that apoE has an important role in modulating tocopherol concentrations in brain, probably acting in concert with other proteins as well.  相似文献   

3.
Oxidative stress is involved in the degeneration of the nigrostriatal dopaminergic system in Parkinson's disease (PD). Vitamin E (alpha-tocopherol) is a potent antioxidant in the cell membrane that can trap free radicals and prohibit lipid peroxidation. The retention and secretion of vitamin E are regulated by alpha-tocopherol transfer protein (TTP) in the brain and liver. Dysfunction of TTP results in systemic deficiency of vitamin E in humans and mice, and increased oxidative stress in mouse brain. In this study, we investigated the effect of vitamin E deficiency in PD development by generating an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD using TTP knockout (TTP-/-) mice. Vitamin E concentration in the brains of TTP+/- mice was half that in TTP+/+ mice, and in TTP-/- mice, was undetectable. MPTP treatment tended to decrease striatal dopamine, but the effect was comparable and not significant in any of the three genotypes. Furthermore, the extent of loss of dopaminergic cell bodies in the substantia nigra did not differ among the groups. One the other hand, oral administration of vitamin E resulted in the partial protection of striatal dopaminergic terminals against MPTP toxicity. Our results suggest that vitamin E does not play a major protective role in MPTP-induced nigrostriatal dopaminergic neurodegeneration in the brain.  相似文献   

4.
Vitamin E is a scavenger molecule trapping free radicals in biological membranes. However, it has also been shown to elicit the formation of reactive oxygen species and apoptosis in cancer cells. In this study, we tested the ability of alpha-tocopherol, tocopherol acetate, tocopherol phosphate and tocopherol succinate (TS) to modulate gap junctional intercellular communication in the rat liver epithelial cell line IAR203, as measured by the transfer of Lucifer yellow. While alpha-tocopherol, tocopherol acetate and tocopherol phosphate moderately reduced the dye transfer, TS at 10 and 25 microM strongly inhibited it, probably via the induction of the hypophosphorylation of connexin 43. Our results show that, besides their interesting antioxidant properties, vitamin E analogs, especially TS, can exert adverse effects on gap junctional intercellular communication, which could explain their controversial effects in carcinogenesis.  相似文献   

5.
The object of this study was to assess the influence of high levels of dietary vitamin E on vitamin E concentrations in specific areas of the brain. Four-week-old male rats were fed vitamin E-deficient, control, and high-vitamin E (1,000 IU/kg) diets for 4 months. Concentrations of alpha-tocopherol in serum, adipose tissue, liver, cerebrum, cerebellum, and striatum were determined by liquid chromatography with fluorescence detection. In the high-vitamin E group, alpha-tocopherol concentrations in cerebrum, cerebellum, and striatum increased uniformly to 1.4-fold of values in controls; serum, adipose tissue, and liver attained even higher concentrations: 2.2-, 2.2-, and 4.6-fold, respectively, of control values. As observed before, brain levels of alpha-tocopherol were somewhat resistant to vitamin E deficiency, in contrast to the peripheral tissues.  相似文献   

6.
To investigate the role of chronic oxidative stress in MPTP neurotoxicity, C57BL mice were maintained 6–8 weeks on diets deficient in nutrients essential to cellular antioxidant defenses, selenium (Se) and alpha-tocopherol (vit E), and the effects on tissue antioxidant status and MPTP toxicity were evaluated relative to controls on supplemented diets. Activities of the major antioxidant enzymes, glutathione peroxidase (GPx), catalase, and superoxide dismutase, and levels of malondialdehyde as a marker for oxidative stress, were measured in brain, lung, liver and blood. Caudate depletion of dopamine and its metabolites served as a measure of MPTP neurotoxicity. For mice on the Se deficient diet, levels of the selenoenzyme GPx decreased from 50% in brain to 90% in blood. No compensatory changes in the activities of the other antioxidant enzymes were observed and addition of vit E to the diet did not alter antioxidant enzyme activities or malondialdehyde levels. In animals not treated with MPTP, the Se deficient diet significantly increased malondialdehyde only in liver. No protective effect of the antioxidant supplements against caudate depletion of dopamine and its metabolites was observed. However, malondialdehyde levels were increased in the brains of MPTP treated mice on the low Se diets, suggesting the possibility of secondary oxidative damage to tissues accompanying the destruction of substantia nigra neurons by MPTP.  相似文献   

7.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

8.
Vitamin E has failed to protect humans from cardiovascular disease outcome, yet its role in experimental atherosclerosis remains less clear. A previous study (Proc. Natl. Acad. Sci. USA 97:13830-13834; 2000) showed that vitamin E deficiency caused by disruption of the alpha-tocopherol transfer protein gene (Ttpa) is associated with a modest increase in atherosclerosis in apolipoprotein E gene deficient (Apoe(-/-)) mice. Here we confirm this finding and report that in Apoe(-/-)Ttpa(-/-) mice dietary alpha-tocopherol (alphaT) supplements restored circulating and aortic levels of alphaT, and decreased atherosclerosis in the aortic root to a level comparable to that seen in Apoe(-/-) mice. However, such dietary supplements did not decrease disease in Apoe(-/-) mice, whereas dietary supplements with a synthetic vitamin E analog (BO-653), either alone or in combination with alphaT, decreased atherosclerosis in Apoe(-/-) and in Apoe(-/-)Ttpa(-/-) mice. Differences in atherosclerosis were not associated with changes in the arterial concentrations of F(2)-isoprostanes and cholesterylester hydro(pero)xides, nor were they reflected in the resistance of plasma lipids to ex vivo oxidation. These results show that vitamin E at best has a modest effect on experimental atherosclerosis in hyperlipidemic mice, and only in situations of severe vitamin E deficiency and independent of lipid oxidation in the vessel wall.  相似文献   

9.
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for human nutrition. In plants, tocopherol is synthesized in plastids where it protects membranes from oxidative degradation by reactive oxygen species. Tocopherol cyclase (VTE1) catalyzes the penultimate step of tocopherol synthesis, and an Arabidopsis (Arabidopsis thaliana) mutant deficient in VTE1 (vte1) is totally devoid of tocopherol. Overexpression of VTE1 resulted in an increase in total tocopherol of at least 7-fold in leaves, and a dramatic shift from alpha-tocopherol to gamma-tocopherol. Expression studies demonstrated that indeed VTE1 is a major limiting factor of tocopherol synthesis in leaves. Tocopherol deficiency in vte1 resulted in the increase in ascorbate and glutathione, whereas accumulation of tocopherol in VTE1 overexpressing plants led to a decrease in ascorbate and glutathione. Deficiency in one antioxidant in vte1, vtc1 (ascorbate deficient), or cad2 (glutathione deficient) led to increased oxidative stress and to the concomitant increase in alternative antioxidants. Double mutants of vte1 were generated with vtc1 and cad2. Whereas growth, chlorophyll content, and photosynthetic quantum yield were very similar to wild type in vte1, vtc1, cad2, or vte1vtc1, they were reduced in vte1cad2, indicating that the simultaneous loss of tocopherol and glutathione results in moderate oxidative stress that affects the stability and the efficiency of the photosynthetic apparatus.  相似文献   

10.
Phospholipid transfer protein (PLTP) regulates lipid metabolism and plays an important role in oxidative stress. PLTP is highly expressed in blood–brain barrier (BBB), but the role of PLTP in BBB integrity is not clear. In this study, BBB permeability was detected with in vivo multiphoton imaging and Evans blue assay. We found that PLTP deficient mice exhibited increased BBB permeability, as well as decreased expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Cerebrovascular oxidative stress increased in PLTP deficient mice, including increased levels of reactive oxygen species (ROS) and lipid peroxidation marker 4-hydroxy-2-nonenal (HNE) and reduced superoxide dismutase (SOD) activity. Dietary supplementation of antioxidant vitamin E increased BBB integrity and tight junction proteins expression via reducing cerebrovascular oxidative stress. These findings indicated an essential role of PLTP in maintaining BBB integrity, possibly through its ability to transfer vitamin E, and modulate cerebrovascular oxidative stress.  相似文献   

11.
Nicotinamide (vitamin B3) an endogenous metabolite, showed significant inhibition of oxidative damage induced by reactive oxygen species (ROS) generated by ascorbate-Fe2+ and photosensitization systems in rat brain mitochondria. It protected against both protein oxidation and lipid peroxidation, at millimolar concentrations. Inhibition was more pronounced against oxidation of proteins than peroxidation of lipids. Chemically related endogenous compounds, tryptophan and isonicotinic acid, showed comparable inhibitory properties. The protective effect observed, at biologically relevant concentrations, with nicotinamide was more than that of the endogenous antioxidants ascorbic acid and alpha-tocopherol. Hence our studies suggest that nicotinamide (vitamin B3) can be considered as a potent antioxidant capable of protecting the cellular membranes in brain, which is highly susceptible to prooxidants, against oxidative damage induced by ROS.  相似文献   

12.
Mitochondria are exposed to large fluxes of iron, and reactive oxygen and nitrogen species. Hence they are susceptible to oxidative stress, a process inhibited by vitamin E. Our investigations show that iron uncouples oxidative phosphorylation whereas peroxynitrite and nitrite are inhibitors of oxidative phosphorylation. Oxidation of mitochondrial vitamin E is accompanied by generation of lipid peroxidation products, altered enzyme activity and electrical conductance etc., and result in inefficient oxidative phosphorylation. Vitamin E is important for mitochondrial function because: (1) Prior investigations have shown that vitamin E is essential for maintaining mitochondrial respiration. (2) Vitamin E is the most potent, lipid-soluble antioxidant localized ideally in mitochondrial membranes. (3) The decline in respiratory control ratios (RCR) of rat brain mitochondria exposed to peroxynitrite closely paralleled the oxidative elimination of vitamin E. (4) Finally, iron is a strong uncoupler of oxidative phosphorylation in brain mitochondria from vitamin E deficient animals and not from controls.Special issue dedicated to Lawrence F. Eng.  相似文献   

13.
Vitamin E regulates mitochondrial hydrogen peroxide generation.   总被引:11,自引:0,他引:11  
The mitochondrial electron transport system consumes more than 85% of all oxygen used by the cells, and up to 5% of the oxygen consumed by mitochondria is converted to superoxide, hydrogen peroxide, and other reactive oxygen species (ROS) under normal physiologic conditions. Disruption of mitochondrial ultrastructure is one of the earliest pathologic events during vitamin E depletion. The present studies were undertaken to test whether a direct link exists between vitamin E and the production of hydrogen peroxide in the mitochondria. In the first experiment, mice were fed a vitamin E-deficient or-sufficient diet for 15 weeks, after which the mitochondria from liver and skeletal muscle were isolated to determine the rates of hydrogen peroxide production. Deprivation of vitamin E resulted in an approximately 5-fold increase of mitochondrial hydrogen peroxide production in skeletal muscle and a 1-fold increase in liver when compared with the vitamin E-supplemented group. To determine whether vitamin E can dose-dependently influence the production of hydrogen peroxide, four groups of male and female rats were fed diets containing 0, 20, 200, or 2000 lU/kg vitamin E for 90 d. Results showed that dietary vitamin E dose-dependently attenuated hydrogen peroxide production in mitochondria isolated from liver and skeletal muscle of male and female rats. Female rats, however, were more profoundly affected by dietary vitamin E than male rats in the suppression of mitochondrial hydrogen peroxide production in both organs studied. These results showed that vitamin E can directly regulate hydrogen peroxide production in mitochondria and suggest that the overproduction of mitochondrial ROS is the first event leading to the tissue damage observed in vitamin E-deficiency syndromes. Data further suggested that by regulating mitochondrial production of ROS, vitamin E modulates the expression and activation of signal transduction pathways and other redox-sensitive biologic modifiers, and thereby delays or prevents degenerative tissue changes.  相似文献   

14.
The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.  相似文献   

15.
Information accumulated lately has confirmed the essentiality of vitamin E for humans and provided a better understanding of its biological function and metabolic fate. The discovery of -tocopherol transfer protein, which preferentially binds to RRR--tocopherol, not only provides conclusive evidence of the essentiality of vitamin E for humans, but also sheds light on the superiority of RRR--tocopherol biologically over other isomers. The presence of tocopherol regeneration systems and multiple interdependent antioxidant systems is largely responsible for the lack of a widespread deficiency in humans and the difficulty to deplete vitamin E in the adult. The bulk of excess tocopherols consumed is excreted to feces unchanged or to urine with the side chain shortened but the chroman ring intact. The ability of dietary vitamin E to mediate mitochondrial superoxide generation affords a possible mode of action of vitamin E at the tissue levels. By decreasing the generation and/or the levels of reactive oxygen/nitrogen species, dietary vitamin E not only protects against oxidative damage, but also modulates the expression and/or activation of redox-sensitive biological response modifiers that regulate important cellular events.  相似文献   

16.
Novel modes of administering antioxidants to improve delivery to targeted tissues or cells may be advantageous in preventing oxidant-induced pathologies. Vitamin E (alpha-tocopherol) has been shown to be protective in several models of liver injury. The objectives of this study were: (1) to determine if subcutaneously (s.q.) administered emulsified vitamin E enriched liver and hepatic subcellular fractions with the antioxidant and (2) to carry out a time-dependent analysis of serum and tissue vitamin E in rats receiving daily s.q. vitamin E. In the first experiment rats injected daily s.q. with emulsified vitamin E for 9 d increased serum, total liver, liver mitochondria, and liver microsomes by 8-, 16-, 30-, and 29-fold, respectively, compared with placebo injections. Similar enrichment was observed after intramuscular injections. In the second experiment, daily doses of s.q. vitamin E increased liver concentrations 40-fold by 9 d, which decreased to 22-fold by 18 d, whereas serum adjusted vitamin E levels maximized with a 24-fold increase by day 3 and plateaued thereafter. In conclusion, s.q. administration of emulsified vitamin E to rats resulted in substantially elevated serum and liver concentrations of alpha-tocopherol compared with levels achievable by dietary supplementation. The s.q. route of administration is a potentially effective parenteral mode of delivery of vitamin E for conditions in which hepatic oxidative stress is present.  相似文献   

17.
Incubation of human blood platelets in vitro in Tyrode solution with unsaturated fatty acids, diamide or superoxide (generated in situ) resulted in the oxidation of tocopherol in the platelets. Arachidonate concentrations of (3-5).10(-4) M caused a 50% decrease in platelet alpha-tocopherol. The addition of saturated fatty acids or platelet-active substances such as ADP, dibutyryl cyclic AMP, and some prostaglandins, or peroxidizing agents such as hydrogen peroxide and tert-butylhydroperoxide to the incubation medium did not cause any change in platelet tocopherol content. During incubations of platelets with arachidonate, malonaldehyde as well as alpha-tocopherolquinone were produced. The latter was also produced during incubations with diamide or superoxide. The oxidation of tocopherol induced by unsaturated fatty acids may be one factor responsible for the well-known increase in dietary vitamin E requirements induced by polyunsaturated fatty acids. The oxidative consumption of tocopherol in the membranes could be expected to take place during localized release of oxidants such as superoxide and polyunsaturated fatty acids during normal biological function (e.g., phagocytosis) or pathological processes (e.g., ischemia). Tocopherol utilization is kept low probably by the regeneration of the compound by vitamin C and/or the preferential utilization of the other biological antioxidants.  相似文献   

18.
The epsilon 4 allele of the apolipoprotein E gene (ApoE) is associated with Alzheimer's disease (AD). The extent of oxidative damage in AD brains correlates with the presence of the E4 allele of ApoE, suggesting an association between the ApoE4 genotype and oxygen-mediated damage in AD. We tested this hypothesis by subjecting normal and transgenic mice lacking ApoE to oxidative stress by folate deprivation and/or excess dietary iron. Brain tissue of ApoE-deficient mice displayed increased glutathione and antioxidant levels, consistent with attempts to compensate for the lack of ApoE. Folate deprivation and iron challenge individually increased glutathione and antioxidant levels in both normal and ApoE-deficient brain tissue. However, combined treatment with folate deprivation and dietary iron depleted antioxidant capacity and induced oxidative damage in ApoE-deficient brains despite increased glutathione, indicating an inability to compensate for the lack of ApoE under these conditions. These data support the hypothesis that ApoE deficiency is associated with oxidative damage, and demonstrate a combinatorial influence of genetic predisposition, dietary deficiency, and oxidative stress on oxidative damage relevant to AD.  相似文献   

19.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

20.
The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione peroxidase from liver, skeletal muscles and erythrocytes of rats fed a vitamin E-deficient, or supplemented, diet were studied. Vitamin E was added in the diet either as a pure pharmacy form of alpha-tocopherol or as a tocopherol mixture derived from oil wastes. The deficiency of vitamin E caused an increase in the activity of the above mentioned enzymes. Both alpha-tocopherol and the tocopherol mixture were found to influence the glutathione peroxidase system. The dose-dependent response of the glutathione peroxidase system was revealed. Possible mechanisms of the changes in the antioxidizing enzymes induced by vitamin E are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号