首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of hybrid inviability reveals cryptic divergence between the genetic interactions that maintain stable phenotypes in the pure species . We characterized the effects of natural variation on the penetrance of hybrid inviability phenotypes in crosses between Drosophila melanogaster and two species of the D. simulans subcomplex, D. simulans and D. sechellia. Using a panel of wild‐caught lines, we studied the levels of genetic variance present in D. simulans and D. sechellia affecting prezygotic and post‐zygotic isolation in hybridizations with D. melanogaster females. We observed extensive variability in the viability of hybrid individuals, dependent on the genotype of the parents, suggesting that intraspecific natural variation manifests directly in hybrid phenotypes. Furthermore, we found that genetic background significantly affects the penetrance of a well‐studied determinant of hybrid inviability: the interaction between Hmrmel–Lhrsim. Our results suggest that hybrid inviability – and reproductive isolation generally – can be modified by polymorphisms at multiple loci segregating within the parental species. Just as the penetrance of most mutant phenotypes can be modified by the genetic background within the pure species, the penetrance of hybrid inviability phenotypes is highly influenced by the parental genotypes.  相似文献   

2.
The process of speciation is a crucial aspect of evolutionary biology. In this study, we analysed the patterns of evolution of postzygotic reproductive isolation in Galliformes using information on hybridization and genetic distance among species. Four main patterns arose: (1) hybrid inviability and sterility in F1 hybrids increase as species diverge; (2) the presence of geographical overlap does not affect the evolution of postzygotic isolation; (3) the galliforms follow Haldane's rule; (4) hybrid inviability is higher in F2 than in F1 hybrids, but does not appear to be increased in the backcrosses. This study contributes to the growing evidence suggesting that the patterns of evolution of postzygotic isolation and the process of speciation are shared among avian groups (and animals in general). In particular, our results support the notion of F2 hybrid inviability as being key for the maintenance of species genetic integrity when prezygotic isolation barriers are overcome in closely related species, in which postzygotic isolation in the F1 hybrid might still not be fully developed. To the contrary, hybrids from backcrosses did not show serious inviability problems (at least not more than F1 hybrids), demonstrating that they could generate gene flow among bird species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 528–542.  相似文献   

3.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating discrimination and the sterility or inviability of hybrids increase gradually with time. Hybrid sterility and inviability evolve at similar rates. Among allopatric species, mating discrimination and postzygotic isolation evolve at comparable rates, but among sympatric species strong mating discrimination appears well before severe sterility or inviability. This suggests that prezygotic reproductive isolation may be reinforced when allopatric taxa become sympatric. Analysis of the evolution of postzygotic isolation shows that recently diverged taxa usually produce sterile or inviable male but not female hybrids. Moreover, there is a large temporal gap between the evolution of male-limited and female hybrid sterility or inviability. This gap, which is predicted by recent theories about the genetics of speciation, explains the overwhelming preponderance of hybridizations yielding male-limited hybrid sterility or inviability (Haldane's rule).  相似文献   

4.
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito‐nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic‐by‐extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito‐nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X‐bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.  相似文献   

5.
Ecological speciation is a process by which reproductive isolation evolves as the result of divergent natural selection between populations inhabiting distinct environments or exploiting alternative resources. Ecological hybrid inviability provides direct evidence for ecological speciation. To detect ecological hybrid inviability, we examined survival rates to the second instar of F1 hybrids and backcross hybrids in a pair of sympatric phytophagous ladybird beetles, Henosepilachna niponica Lewis and Henosepilachna yasutomii Katakura (Coleoptera: Coccinellidae: Epilachninae), reared on their respective host plants, thistle [Cirsium alpicola Nakai (Asteraceae)] and blue cohosh [Caulophyllum robustum Maxim. (Berberidaceae)], and on a common food plant, Japanese nightshade [Solanum japonense Nakai (Solanaceae)]. Hybrid larvae reared on leaves of the Japanese nightshade always had high rates of survival, irrespective of the crossing type of their parents, suggesting a lack of intrinsic hybrid inviability between the two species. In contrast, survival rates on thistle and blue cohosh varied greatly. On blue cohosh, the survival rate of F1 hybrids was nearly as high as that of H. yasutomii, but on thistle, survival was significantly lower than of H. niponica. Survival rates of backcross hybrids on the two host plants were intermediate between those of the parents, showing a reversed rank order of different types of backcross hybrids on the two food plant species. These results suggest that ecological hybrid inviability exists between H. niponica and H. yasutomii, although the two species do not show intrinsic hybrid inviability. Thus, our study supports the hypothesis that H. niponica and H. yasutomii underwent ecological speciation by divergent selection.  相似文献   

6.
The evolution of reproductive barriers is of central importance for speciation. Here, we investigated three components of postzygotic isolation-embryo mortality, hybrid inviability, and hybrid sterility-in a group of food-deceptive Mediterranean orchids from the genera Anacamptis, Neotinea, and Orchis. In these orchids, pollinator-mediated isolation is weak, which suggests that postpollination barriers exist. Based on crossing experiments and a literature survey, we found that embryo mortality caused complete reproductive isolation among 36.3% of the species pairs, and hybrid inviability affected 55.6% of the potentially hybridizing species pairs. Hybrid sterility was assessed experimentally for seven species pairs. A strong reduction of fertility in all investigated hybrids was found, together with clear differences between male and female components of hybrid sterility. Postzygotic isolation was found to evolve gradually with genetic divergence, and late postzygotic isolation (i.e., hybrid inviability and sterility) evolved faster than embryo mortality, which is an earlier postzygotic isolation stage. These results reveal that intrinsic postzygotic isolation strongly contributes to maintaining species boundaries among Mediterranean food-deceptive orchids while establishing a prominent role for these reproductive barriers in the early stage of species isolation.  相似文献   

7.
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   

8.
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent‐of‐origin‐dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth‐related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved.  相似文献   

9.
In hybrids between the sibling species D. buzzatii and D. koepferae, both sexes are more or less equally viable in the F1: However, backcross males to D. buzzatii are frequently inviable, apparently because of interspecific genetic incompatibilities that are cryptic in the F1. We have performed a genetic dissection of the effects of the X chromosome from D. koepferae. We found only two cytological regions, termed hmi-1 and hmi-2, altogether representing 9% of the whole chromosome, which when introgressed into D. buzzatii cause inviability of hybrid males. Observation of the pattern of asynapsis of polytene chromosomes (incomplete pairing, marking introgressed material) in females and segregation analyses were the technique used to infer the X chromosome regions responsible for this hybrid male inviability. The comparison of these results with those previously obtained with the same technique for hybrid male sterility in this same species pair indicate that in the X chromosome of D. koepferae there are at least seven times more regions that produce hybrid male sterility than hybrid male inviability. We have also found that the inviability brought about by the introgression of hmi-1 is suppressed by the cointrogression of two autosomal sections from D. koepferae. Apparently, these three regions conform to a system of species-specific complementary factors involved in an X-autosome interaction that, when disrupted in backcross hybrids by recombination with the genome of its sibling D. buzzatii, brings about hybrid male inviability.  相似文献   

10.
Crossing experiments and food-choice tests show that two sympatric species of phytophagous ladybird beetles, Epilachna niponica and E. yasutomii, are reproductively isolated by host-plant specificity. Adult beetles selected their natural hosts when given choices, though some accepted the host of the other species when no choice was offered. In each species, survival of larvae to the second instar was significantly higher on their own host plant. No evidence for sexual isolation, gametic isolation, hybrid inviability, or reduced hybrid fertility was detected. Reproductive isolation by host specificity is an important prerequisite for certain models of sympatric speciation. Although the present example supports the plausibility of such models, an allopatric origin of host-plant specificity cannot be discounted.  相似文献   

11.
The evolution of intrinsic postzygotic isolation can be explained by the accumulation of Dobzhansky‐Muller incompatibilities (DMI). Asymmetries in the levels of hybrid inviability and hybrid sterility are commonly observed between reciprocal crosses, a pattern that can result from the involvement of uniparentally inherited factors. The mitochondrial genome is one such factor that appears to participate in DMI in some crosses but the frequency of its involvement versus biparentally inherited factors is unclear. Here we assess the relative importance of incompatibilities between nuclear factors (nuclear‐nuclear) versus those between mitochondrial and nuclear factors (mito‐nuclear) in a species that lacks sex chromosomes. We used a Pool‐seq approach to survey three crosses among genetically divergent populations of the copepod, Tigriopus californicus, for regions of the genome that are affected by hybrid inviability. Results from reciprocal crosses suggest that mito‐nuclear incompatibilities are more common than nuclear‐nuclear incompatibilities overall. These results suggest that in the presence of very high levels of nucleotide divergence between mtDNA haplotypes, mito‐nuclear incompatibilities can be important for the evolution of intrinsic postzygotic isolation. This is particularly interesting considering this species lacks sex chromosomes, which have been shown to harbor a particularly high number of nuclear‐nuclear DMI in several other species.  相似文献   

12.
Coyne and Orr found that mating discrimination (premating isolation) evolves much faster between sympatric than allopatric Drosophila species pairs. Their meta‐analyses established that this pattern, expected under reinforcement, is common and that Haldane's rule is ubiquitous in Drosophila species divergence. We examine three possible contributors to the reinforcement pattern: intrinsic postzygotic isolation, dichotomized as to whether hybrid males show complete inviability/sterility; host‐plant divergence, as a surrogate for extrinsic postzygotic isolation; and X chromosome size, whether roughly 20% or 40% of the genome is X‐linked. We focus on “young” species pairs with overlapping ranges, contrasted with allopatric pairs. Using alternative criteria for “sympatry” and tests that compare either level of prezygotic isolation in sympatry or frequency of sympatry, we find no statistically significant effects associated with X chromosome size or our coarse quantifications of intrinsic postzygotic isolation or ecological differentiation. Although sympatric speciation seems very rare in animals, the pervasiveness of the reinforcement pattern and the commonness of range overlap for close relatives indicate that speciation in Drosophila is often not purely allopatric. It remains to determine whether increased premating isolation with sympatry results from secondary contact versus parapatric speciation and what drives this pattern.  相似文献   

13.
14.
When hybrid inviability is an indirect by‐product of local adaptation, we expect its degree of severity between pairs of populations to vary and to be sensitive to the environment. While complete reciprocal hybrid inviability is the outcome of the gradual process of local adaptation, it is not representative of the process of accumulation of incompatibility. In the flour beetle, Tribolium castaneum, some pairs of populations exhibit complete, reciprocal F1 hybrid incompatibility while other pairs are fully or partially compatible. We characterize this naturally occurring variation in the degree and timing of expression of the hybrid incompatible phenotype to better understand the number of genes or developmental processes contributing to speciation. We assessed the morphological and developmental variation in four Tribolium castaneum populations and their 12 possible F1 hybrids at each life‐history stage from egg to adult. We find that the rate of hybrid larval development is affected in all interpopulation crosses, including those eventually producing viable, fertile adults. Hybrid incompatibility manifests early in development as changes in the duration of instars and diminished success in the transition between instars are relative to the parent populations. Parent populations with similar developmental profiles may produce hybrids with disrupted development. The degree and timing of expression of hybrid inviability depends upon populations crossed, direction of the cross, and environment in which hybrids are raised. Our findings suggest that the coordinated expression of genes involved in transitional periods of development is the underlying cause of hybrid incompatibility in this species.  相似文献   

15.
The potential importance of cytoplasmic incompatibility (CI)‐inducing bacterial symbionts in speciation of their arthropod hosts has been debated. Theoretical advances have led to a consensus that a role is plausible when CI is combined with other isolating barriers. However, the insect model systems Nasonia and Drosophila are the only two experimental examples documented. Here, we analyzed the components of reproductive isolation between the parasitoid wasp Encarsia suzannae, which is infected by the CI‐inducing symbiont Cardinium, and its uninfected sibling species Encarsia gennaroi. Laboratory crosses demonstrated that: (1) sexual isolation is incomplete; (2) hybrid offspring production is greatly reduced in the interspecific CI cross; (3) viable hybrids may be produced by curing E. suzannae males of Cardinium with antibiotics; (4) hybrid offspring production in the reciprocal cross is greatly reduced by hybrid inviability due to genetic incompatibilities; (5) hybrid sterility is nearly complete in both directions at the F1 stage. Thus, asymmetrical hybrid incompatibilities and CI act as complementary isolating mechanisms. We propose a new model for contributions of CI symbionts to speciation, with CI reducing gene flow between species in one direction, and in the other, a symbiont sweep resulting in accelerated mtDNA evolution, negative cytonuclear interactions, and hybrid incompatibilities.  相似文献   

16.
Crosses between populations or species often display an asymmetry in the fitness of reciprocal F1 hybrids. This pattern, referred to as isolation asymmetry or Darwin''s Corollary to Haldane''s Rule, has been observed in taxa from plants to vertebrates, yet we still know little about which factors determine its magnitude and direction. Here, we show that differences in offspring size predict the direction of isolation asymmetry observed in crosses between populations of a placental fish, Heterandria formosa. In crosses between populations with differences in offspring size, high rates of hybrid inviability occur only when the mother is from a population characterized by small offspring. Crosses between populations that display similarly sized offspring, whether large or small, do not result in high levels of hybrid inviability in either direction. We suggest this asymmetric pattern of reproductive isolation is due to a disruption of parent–offspring coadaptation that emerges from selection for differently sized offspring in different populations.  相似文献   

17.
Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F1 and F2 progenies suggests that Bateson–Dobzhansky–Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence.  相似文献   

18.
杂交种子研究在一定程度上能说明是否存在杂种不活机制,在植物生殖隔离研究中具有重要意义。通过对同域分布的西藏杓兰(Cypripedium tibeticum)、黄花杓兰(C.flavum)和褐花杓兰(C.calcicola)的自交、异交、杂交种子的形态特征及活性进行分析,发现3种杓兰属植物两两之间均可产生杂交种子,且杂交种子活性较高,杂交种子与其他处理所得种子的外观、表面纹饰无显著性差异;种子宽度、种子长度、有胚率、着色率并没有比自交或异交种子显著低。这一结果表明这3种同域杓兰属植物种与种之间具有相当高的亲和性,它们之间不存在明显的杂种不活机制。黄花杓兰与西藏杓兰或褐花杓兰间的传粉者大小明显不同,黄花杓兰由丽蝇和熊蜂工蜂传粉,而西藏杓兰和褐花杓兰由体形较大的熊蜂蜂王传粉,传粉者隔离已使得它们之间的物种界限比较清晰,因此已经没有必要再产生杂种不活等其他隔离机制。而西藏杓兰与褐花杓兰的传粉者相同,又没有明显的杂种不活隔离机制,暗示它们之间有其他合子后隔离机制或应将其合并为一个种。  相似文献   

19.
Jacob C. Cooper 《Fly》2016,10(3):142-148
Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.  相似文献   

20.
Nosil P  Crespi BJ  Gries R  Gries G 《Genetica》2007,129(3):309-327
Sexual isolation can evolve due to natural selection against hybrids (reinforcement). However, many different forms of hybrid dysfunction, and selective processes that do not involve hybrids, can contribute to the evolution of sexual isolation. Here we review how different selective processes affect the evolution of sexual isolation, describe approaches for distinguishing among them, and assess how they contribute to variation in sexual isolation among populations of Timema cristinae stick-insects. Pairs of allopatric populations of T. cristinae living on different host-plant species exhibit greater sexual isolation than those on the same host, indicating that some sexual isolation has evolved due to host adaptation. Sexual isolation is strongest in regions where populations on different hosts are in geographic contact, a pattern of reproductive character displacement that is indicative of reinforcement. Ecological costs to hybridization do occur but traits under ecological selection (predation) do not co-vary strongly with the probability of between-population mating such that selection on ecological traits is not predicted to produce a strong correlated evolutionary response in mate preference. Moreover, F1 hybrid egg inviability is lacking and the factors contributing to reproductive character displacement require further study. Finally, we show that sexual isolation involves, at least in part, olfactory communication. Our results illustrate how understanding of the evolution of sexual isolation can be enhanced by isolating the roles of diverse ecological and evolutionary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号