首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Like many angiosperms, Crinum erubescens is partially self-compatible, producing fewer seeds upon selfing than after outcrossing. In this paper we test the relative magnitude of the prefertilization and postfertilization effects of self-incompatibility, inbreeding depression, or both in a natural population of this hermaphroditic tropical herb. We characterize prefertilization effects by examining pollen tube growth, while postfertilization effects are characterized by examination of embryo abortion and seed maturation. Statistical methods are developed to test the magnitude of these effects from one life-cycle stage to the next. We find that although pollen performance in selfed flowers is lower than that in outcrossed flowers, pollen performance is low overall. Postfertilization effects attributable to inbreeding depression account for a larger proportion of the reduction in fecundity in selfed compared to outcrossed flowers. Among naturally pollinated plants, despite ample pollen deposition, the numbers of fruits and seeds set are intermediate to selfed and outcrossed treatments.  相似文献   

2.
This paper examines several aspects of the expression of inbreeding depression in an outcrossing, obligately biennial plant, Hydrophyllum appendiculatum (Hydrophyllaceae). The amount of inbreeding depression detected was small during the first year of life but increased with age and had significant effects on adult size and reproductive traits. The lack of significant inbreeding depression during early growth is likely due to the overriding influence of maternal environmental effects on seed size and seedling growth. However, as maternal effects decreased with age, the seedling's own genotype became a more important determinant of its fate. To examine whether the expression of inbreeding depression was sensitive to ecological conditions, selfed and outcrossed seedlings were grown alone or with other H. appendiculatum seedlings. No inbreeding depression was detected in the plants grown alone. In contrast, under competitive conditions, outcrossed seedlings were significantly larger than selfed seedlings by the end of the first growing season. To address whether parental mating history influences the amount of inbreeding depression expressed, I examined the consequences of two successive generations of selfing on seed set and seed weight. The amount of inbreeding depression increased following the second generation of selfing. In the first generation, seed set and seed weight differed by less than 5% between selfed and outcrossed progeny. However, both traits were 15% greater for outcrossed plants after two generations. These results indicate that the alleles responsible for the reductions in these traits were not purged and suggest the action of multiple loci with deleterious effects.  相似文献   

3.
Flowers frequently receive both self (S) and outcross (OC) pollen, but S pollen often sires proportionally fewer seeds. Failure of S pollen can reflect evolved mechanisms that promote outcrossing and/or inbreeding depression expressed during seed development. The relative importance of these two processes was investigated in Aquilegia caerulea, a self-compatible perennial herb. In the field I performed single-donor (S or OC) and mixed-donor (S plus OC) pollinations to compare the relative success of both pollen types at various stages from pollen germination to seed maturity. Single-donor S pollinations produced significantly fewer and lighter seeds (x decrease = 12% and 3%, respectively) than OC pollinations. Abortion rates differed by an average of 38% whereas fertilization rates differed by only 5%, indicating that most differences in seed number arose postzygotically. This suggests that inbreeding depression was responsible for most failure of S pollen. One prezygotic effect measured was that 10% fewer S than OC pollen tubes reached ovaries after 42 hr, suggesting S pollen might fertilize proportionately fewer ovules after mixed pollination. Using allozyme markers, I found mixed-donor pollinations produced significantly more and heavier outcrossed than selfed seeds. However, the proportion of selfed seed, fertilized ovules, and aborted seeds for mixed-donor fruits were each predictable from pollen performance in single-donor fruits, suggesting that differential paternity is best explained by inbreeding depression during seed development. Even given these similarities between mixed- and single-donor fruits in the relative performance of S and OC pollen, both individual seed weight and seed set were significantly higher in multiply-sired fruits.  相似文献   

4.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

5.
Evolution of the Selfing Rate and Resource Allocation Models   总被引:1,自引:0,他引:1  
Abstract First, evolutionary theories of selfing of terrestrial plants are reviewed briefly. The evolution of the selfing rate is controlled mainly by (1) the benefit of enhanced genetic relatedness to seeds and (2) the cost of lowered fitness of selfed offspring (inbreeding depression), being modified by (3) fertility assurance under pollen limitation, (4) reduced performance as pollen donor, (5) reduced expenditure to male function, and (6) lowered genetic recombination. Models of the joint evolution of selfing and inbreeding depression predict either strong outcrossing or predominant selfing. Although wind-pollinated plants fit the prediction, some animal-pollinated species have intermediate selfing rates, refuting the theory.
Second, three resource allocation models are analyzed, in which an individual plant optimally allocates limited resources to outcrossed seeds, selfed seeds, and to energy reserves for the next year. The first model explains how the number of outcrossed and selfed offspring change with plant size when they differ in dispersal distance. The second model predicts that, in a disturbed habitat, the plant is likely to be annual and to produce both selfed and outcrossed seeds; in contrast, in a stable habitat, the plant tends to be perennial and to abort selfed seeds selectively. Hand pollination may increase seed production for perennials but not for annuals. The third model explains the observed difference between animal and wind pollinated plants in the out-crossing rate pattern by the difference in the way pollen acquisition increases with investment.  相似文献   

6.
The consequences of inbreeding for reproductive traits were investigated for two closely related annual lupines that differ in their mating system. Lupinus bicolor (Leguminosae) is a primarily selling species while Lupinus nanus outcrosses at intermediate rates. A controlled crossing program was used for each species to produce selfed and outcrossed progeny. These progeny were then grown in a greenhouse and scored for the date of first flower, flower morphology, and autofertility. Selfed progeny of L. bicolor produced significantly smaller flowers but did not differ from outcrossed progeny for the remaining traits. Selfed progeny of L. nanus produced flowers that significantly differed in shape and had fewer ovules than the flowers of outcrossed progeny. Selfed progeny of L. nanus also had significantly lower rates of autofertility in comparison to outcrossed progeny. The significant effects of inbreeding on these mating system traits may indicate the presence of directional dominance at the loci underlying these characters. The consequences of these direct effects of inbreeding on reproductive traits for plants growing in natural populations may include nonadaptive changes in the outcrossing rate between generations.  相似文献   

7.
Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved.  相似文献   

8.
Many plants display limited seed dispersal, thereby creating an opportunity for sibling competition, i.e. fitness-determined interactions between related individuals. Here I investigated the consequences of intra-specific competition, by varying density and genetic composition of neighbors, on the performance of seedlings derived by selfing or outcrossing of the partially self-fertilizing plant Plantago coronopus (L.). Seedlings from eight plants, randomly selected from an area of about 50 m2 in a natural population, were used in (i) a density series with either one, four or eight siblings of each cross type per pot and (ii) a replacement series with eight plants per pot where selfed and outcrossed siblings were grown intermixed in varying frequencies. Density had a pronounced effect on plant performance. But, except for singly grown individuals, no differences were detected between selfed and outcrossed progenies in vegetative and reproductive biomass. When grown intermixed, selfed offspring were always inferior to their outcrossed relatives. The magnitude of reduction in performance was dependent on the number of outcrossed relatives a selfed seedling had to compete with, giving rise to a frequency-dependent fitness advantage to outcrossed seedlings. The major result of this study is (i) that the relative fitness of inbred progeny is strongly affected by the type of competitors (inbred or outbred) and (ii) that inbreeding depression varies according to the density and frequency of outbred plants and could be considered as a density- and frequency-dependent phenomenon. It is argued that sibling competition, due to the small genetic neighborhood of P. coronopus, might be an important selective force in natural populations of this species.  相似文献   

9.
Accurate estimates of inbreeding depression are necessary in order to predict the evolutionary dynamics of a population, but many studies estimate inbreeding depression based solely on components of female function such as fruit set, seed set, and seed quality. Because total fitness is achieved through both male and female functions in hermaphroditic plants, estimates of both male and female fitness are needed to estimate accurately the magnitude of inbreeding depression. Seedlings of a wild gourd, Cucurbita pepo subsp. texana, with coefficients of inbreeding of 0 and 0.75 were planted in an experimental garden, and several components of male and female fitness were measured over the course of the growing season. Fitness in inbred plants was confounded by both maternal and genetic inbreeding effects. Inbred individuals produced significantly fewer fruits than outcrossed individuals, and percentage germination of seeds from inbred individuals was significantly lower than seeds from outcrossed individuals. Inbred plants also produced significantly fewer staminate flowers and marginally fewer and smaller pollen grains per flower. Pollen from inbred plants also grew significantly more slowly in vitro than pollen from outcrossed plants. Multiplicative estimates of inbreeding depression revealed inbreeding depression for both male and female functions in wild gourd, but inbreeding depression through female function was stronger than inbreeding depression through male function.  相似文献   

10.
To determine the effects of soil phosphorus on pollen production, pollen grain size, phosphate concentration per pollen grain, and the siring ability of pollen, two cultivars of the common zucchini (Cucurbita pepo) were grown under two soil phosphorus conditions in an experimental garden. Overall, soil phosphorus availability had a significant effect on reproductive output through the female function and on traits affecting the male function of plants (staminate flower production, pollen production per flower, and pollen grain size). In addition, pollen produced by plants in the high phosphorus soils had a higher phosphate concentration than pollen produced by plants in the low phosphorus soils. A pollen mixture experiment revealed that pollen produced by plants in the high phosphorus treatment sired significantly more seeds than pollen produced by plants in the low phosphorus treatment. This study showed that growing conditions such as soil phosphorus can influence the size of a pollen grain and its chemical composition, which, in turn, can affect its ability to sire mature seeds.  相似文献   

11.
We present evidence that extreme seed size variation in fruits of Crinum erubescens (range: 0.1 to 66.5 g per seed) occurs when mating pairs are inbred, either from selfing or biparental inbreeding. Several relatively uniform seeds of intermediate size are produced when pollen from several pollen donors is applied simultaneously to a flower. Selfed fruits and some fruits pollinated with a single pollen donor produce both large and small seeds, although selfed fruits produce fewer seeds than outcrossed fruit. These results are contrary to the hypothesis that variation in seed size is attributable to either pollen competition or differential allocation of maternal resource to seeds of different genotypes.  相似文献   

12.
Inbreeding depression is commonly observed in natural populations. The deleterious effects of forced inbreeding are often thought to be less pronounced in populations with self-pollinating mating systems than in primarily outcrossing populations. We tested this hypothesis by comparing the performance of plants produced by artificial self- and cross-pollination from three populations whose outcrossing rate estimates were 0.03, 0.26, and 0.58. Outcrossing rates and inbreeding coefficients were estimated using isozyme polymorphisms as genetic markers. Analysis of F statistics suggests that biparental inbreeding as well as self-fertilization contribute to the level of homozygosity in the seed crop. Biparental inbreeding will reduce the heterozygosity of progeny produced by outcrossing, relative to random outcrossing expectations, and hence will reduce the effects of outcrossing versus self-fertilization. Heterotic selection may increase the average heterozygosity during the life history. Selfed and outcrossed seeds from all three populations were equally likely to germinate and survive to reproduce. However, inbreeding depression was observed in fecundity traits of plants surviving to reproduction in all three populations. Even in the population whose natural self-fertilization rate was 97%, plants grown from seed produced by self-pollination produced fewer fruits and less total seed weight than plants grown from outcrossed seed. There was no detectable inbreeding depression in estimated lifetime fitness. Inbreeding effects for all reproductive yield characters were most severe in the accession from the most outcrossing population and least severe in the accession from the most self-fertilizing population.  相似文献   

13.
We evaluated the degree of selfing and inbreeding depression at the seed and seedling stages of a threatened tropical canopy tree, Neobalanocarpus heimii, using microsatellite markers. Selection resulted in an overall decrease in the level of surviving selfed progeny from seeds to established seedlings, indicating inbreeding depression during seedling establishment. Mean seed mass of selfed progeny was lower than that of outcrossed progeny. Since the smaller seeds suffered a fitness disadvantage at germination in N. heimii, the reduced seed mass of selfed progeny would be one of the determinants of the observed inbreeding depression during seedling establishment. High selfing rates in some mother trees could be attributed to low local densities of reproductive individuals, thus maintenance of a sufficiently high density of mature N. heimii should facilitate regeneration and conservation of the species.  相似文献   

14.
Knowledge of the factors that limit reproduction is critical to an understanding of plant ecology, and is particularly important for predicting population viability for threatened species. Here, we investigated the pollination biology of a globally threatened plant, Polemonium vanbruntiae, using hand-pollination experiments in four natural populations to determine the degree of pollen limitation. In addition, we investigated the mating system and extent to which plants can self-fertilize by comparing geitonogamously and autonomously self-fertilized plants with purely outcrossed and open-pollinated plants. In contrast to several of the more common species of Polemonium, we found no pollen limitation in any of the four populations of P. vanbruntiae over two years. The lack of pollen limitation was best explained by the capacity for P. vanbruntiae to both geitonogamously and autonomously self-fertilize, unlike some of its more common congeners. Geitonogamously selfed flowers set equivalent numbers of seeds when compared to purely outcrossed and open-pollinated flowers. However, autonomously selfed flowers produced significantly fewer seeds, demonstrating that pollinators play an important role as inter- and intra-plant pollen vectors in this system. Our results support the reproductive assurance hypothesis, whereby the ability to self assures fertilization for plants in small populations. Self-compatibility in Polemonium vanbruntiae may decrease extinction risk of isolated populations experiencing a stochastic pollinator pool within a restricted geographic range. In addition, a mixed-mating strategy, including the ability for clonal reproduction, may explain the ability for this rare species to persist in small, fragmented populations.  相似文献   

15.
Abstract 1. Plant traits (e.g. nutrition, allelochemistry) are an important determinant of the feeding preferences and performance of insect herbivores. Recent evidence suggests that plant inbreeding can affect plant–insect interactions by impacting host‐plant quality and resistance to herbivory. 2. The effect of inbreeding on host‐plant quality for, and resistance against, the tobacco hornworm, Manduca sexta L., was assessed in the wild solanaceous weed horsenettle, Solanum carolinense L. Caterpillar preference, relative growth rate (RGR), total leaf consumption (TC), and per cent total nitrogen in leaves were examined using selfed and outcrossed progeny of eight maternal plants. 3. Inbreeding significantly influenced insect preference, with caterpillars preferring leaf discs from selfed versus outcrossed plants. There was also a breeding effect for RGR and TC, with both higher on selfed plants. No breeding effect for per cent total nitrogen was observed. 4. The results of this study indicate that inbreeding decreased resistance against the tobacco hornworm, but did not affect plant quality. Decreased plant resistance will likely alter interactions with the herbivore community and could also have important consequences for plant–herbivore–natural enemy interactions.  相似文献   

16.
In rare plants that often occur in small or isolated populations the probability of selfing between close relatives is increased as a consequence of demographic stochasticity. The mode of pollination (selfing, outcrossing) may have considerable effects on seed traits and offspring performance and hence potential viability. Since current efforts aiming at the restoration of floodplain grasslands through the transfer of plant material from species-rich source stands may lead to the establishment of initially small populations consisting of founders from different populations, the present paper experimentally investigated the effects of pollen source and floral types (i.e. chasmogamous (CH) and cleistogamous (CL) flowers) on seed traits and offspring performance in three highly endangered violet species (Viola elatior, V. pumila, V. stagnina) of these grasslands. We estimated inbreeding depression and tested the performance of selfed and outcrossed offspring in two microbial environments, i.e. in soil inoculated with (i) non-sterile substrate from the same species (‘home’-conditions) and (ii) sterilised substrate.Plants produced more CL capsules than CH flowers. Pollinator exclusion had only small effects on CH seed production. CL seeds had a significantly lower mass per seed than CH seeds. This may be related to constraints in allocation or environmental conditions. Seedling growth was reduced in plants grown under ‘home’-conditions as compared to control soils. Under ‘home’-conditions, relative fitness of selfed seedlings of V. stagnina was significantly higher than that of crossed progeny. Our results suggest that high genetic differentiation among populations as a consequence of isolation may result in outbreeding depression, e.g., through biochemical or physiological incompatibilities between genes or the breaking of coadapted gene complexes. In V. stagnina, offspring fitness differed considerably between environments, but in general we found no indications for inbreeding depression in these rare species.  相似文献   

17.
Summary Experimental pollinations of Costus allenii (Zingiberaceae) were conducted to assess the effects of pollen composition on fitness. Plants were selfed, outcrossed with the first nearest neighbor, and outcrossed with pollen mixtures obtained from the nearest 2, 3, and 5 plants. Cross type had a significant effect on seed production, seed weight and total-plant dry weight. Progeny from crosses with 3, and 5 parents grew significantly larger than selfed progeny, or those from 1-parent crosses. Competition experiments indicated the superiority of progeny from 3-, and 5-parent crosses over progeny from 1-parent crosses, but no differences in competitive ability were observed between progeny from 3-, and 5-parent crosses. Relative fitness, based on 1) seed production, 2) percent germination, and 3) dry weight, varied significantly among crosses, and was greatest for crosses with 3 parents and lowest for selfs. The relative fitness of progeny from 5-parent crosses was lower than that of all other outcrossed classes. We suggest that the significant effect of pollen composition on fitness results from variation in the genetic similarity of seed and pollen parents, which is a function of spatial distribution and population structure.  相似文献   

18.
In monoecious plants, gametes can be exchanged in three ways: among unrelated genets (outbreeding), with close relatives (inbreeding), or within individuals (geitonogamous selfing). These different mating systems may have consequences for population demography and fitness. The experiment presented herein used artificial crosses to examine the mating system of Chesapeake Bay, Virginia, USA eelgrass (Zostera marina L; Zosteraceae), a bisexual submerged aquatic plant that can outbreed, inbreed, and self. Genetic data indicate severe heterozygosity deficiencies and patchy genotype distribution in these beds, suggesting that plants therein reproduce primarily by vegetative propagation, autogamy, or geitonogamy. To clarify eelgrass reproductive strategies, flowers from three genetically and geographically distinct beds were hand-pollinated in outbred, inbred, and selfed matings. Fertilization success and seed production, life history stages which contribute greatly to the numeric maintenance of populations, were monitored. We found no evidence that inbreeding had negative consequences for seed production. On the contrary, selfed matings produced seeds significantly more frequently than outcrossed matings and produced significantly larger numbers of seeds than either inbred or outbred matings. These results contrast with patterns for eelgrass in other regions but might be expected for similar populations in which pollen limitation or a short reproductive season renders selfing advantageous.  相似文献   

19.
We examined the effects of a slight genetic disadvantage in a competitive situation by comparing the performance of inbred and outcrossed Brassica rapa plants over a range of neighbor densities, using a rapid-cycling, self-compatible cultivar of this species. We also examined the genetic correlations in performance among plants grown alone and with intra- and interspecific competitors. Competition had a strong effect on biomass and on the number of flowers produced, but differences in biomass between inbred and outcrossed plants were dependent on the competitive environment. Outcrossed plants outperformed those that were selfed only at intermediate densities of neighbors; at high densities and in the absence of competition inbred and outcrossed plants did not differ. For outcrossed families, performance without competitors and in intra- and interspecific competition were all highly correlated, but for selfed families, correlations were low, and performance in competition was not predictable from that of plants grown alone. Thus, the phenotypic expression of genetic differences may depend on the density of neighbors with which plants are grown.  相似文献   

20.

Background  

Solanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S -alleles. The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. We performed a series of greenhouse and field experiments to determine the magnitude of inbreeding depression in S. carolinense, whether inbreeding depression varies by family, and whether the estimates of inbreeding depression vary under field and greenhouse conditions. We performed a series of controlled self- and cross-pollinations on 16 genets collected from a large population in Pennsylvania to obtain progeny with different levels of inbreeding. We grew the selfed and outcrossed progeny in the greenhouse and under field conditions and recorded various measures of growth and reproductive output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号