首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I have examined the adaptive significance of polyandry using the Australian field cricket Teleogryllus oceanicus. Previous studies of polyandry have examined differences in offspring production by females mated multiply to a single male or females mated multiply to different males. Here I combine this approach with a study of parentage of offspring produced in the later group. Females mated to two different males had a higher proportion of their eggs hatching than did females mating twice with a single male. Offspring fitness parameters were not effected. There was little evidence to suggest that females elevate their hatching success via fertilizing their eggs with sperm from genetically compatible males. Although the average paternity points towards random sperm mixing, there was considerable individual variation in sperm competition success. Patterns of parentage were consistent across females mating twice or four times. Sperm competition success was not related to offspring viability or performance. Thus, the notion that competitively superior sperm produce competitively superior offspring is not supported either. The mechanism underlying increased hatching success with polyandry requires further study.  相似文献   

2.
Females often mate with several different males, which may promote sperm competition and increase offspring viability. However, the potential benefits of polyandry remain controversial, particularly in birds where recent reviews have suggested that females gain few genetic benefits from extra‐pair mating. In tree swallows (Tachycineta bicolor), we found that females with prior breeding experience had more sires per brood when paired to genetically similar social mates, and, among experienced females, broods with more sires had higher hatching success. Individual females breeding in two consecutive years also produced broods with more sires when they were more genetically similar to their mate. Thus, experienced females were able to avoid the costs of mating with a genetically similar social mate and realize fitness benefits from mating with a relatively large number of males. This is one of the first studies to show that female breeding experience influences polyandry and female fitness in a natural population of vertebrates. Our results suggest that the benefits of polyandry may only be clear when considering both the number of mates females acquire and their ability to modify the outcome of sexual conflict.  相似文献   

3.
Several studies suggest that females mate multiply so that they can preferentially fertilize eggs with the sperm of genetically more compatible males. Unrelated males are expected to be genetically more compatible with a female than her close relatives. We tested whether black field crickets, Teleogryllus commodus, can bias sperm usage toward unrelated males by comparing egg hatching success of females mated to two of their siblings (SS), two sibling males unrelated to the female (NN) or to one unrelated male and a sibling male (NS or SN). Egg hatching success was highly repeatable. Hatching success varied significantly among females of the three mating types (P = 0.011, n = 245 females). The estimated mean hatching success of 36.8% for SS females was significantly less that the 43.4% of NN females, indicating an effect of inbreeding on hatching success. If females preferentially use the sperm of a less closely related male, the hatching success of NS/SN females should be closer to 43.4% than 36.8%. It was, in fact, only 34.9%. This does not differ significantly from the value expected if the two males contributed an equal amount of sperm that was then used randomly. Although polyandry may confer indirect genetic benefits, our results provide no evidence that female T. commodus gain these benefits by biasing paternity toward genetically more compatible males through postcopulatory mechanisms.  相似文献   

4.
In many species, females are thought to benefit from polyandry due to the reduced risks of fertilization by genetically incompatible sperm. However, few studies that have reported such benefits have directly attributed variation in female reproductive success to the interacting effects of males and females at fertilization. In this paper, we determine whether male x female interactions influence fertilization in vitro in the free-spawning, sessile polychaete Galeolaria caespitosa. Furthermore, we determined whether polyandry results in direct fertilization benefits for females by experimentally manipulating the number of males contributing towards staged spawning events. To test for male x female interaction effects we performed an initial experiment that crossed seven males with six females (in all 42 combinations), enabling us to assess fertilization rates for each specific male-female pairing and attribute variation in fertilization success to males, females and their interaction. This initial experiment revealed a strong interaction between males and females at fertilization, confirming that certain male-female combinations were more compatible than others. A second experiment tested the hypothesis that polyandry enhances female reproductive success by exposing each female's eggs to either a single male's sperm (monandry) or the sperm from three males simultaneously (polyandry). We performed this second experiment at two ecologically relevant sperm concentrations. This latter experiment revealed a strong fertilization benefit of polyandry, independent of the effects of sperm concentration (which were also significant). We suggest that these direct fertilization gains arising from polyandry will constitute an important source of selection on females to mate multiply in nature.  相似文献   

5.
Female insects that mate multiply tend to have increased lifetime fitness, apparently because of greater access to male-derived resources (e.g. sperm, nuptial gifts) that elevate fertility/fecundity. Experiments that standardize the number of matings per female also show that polyandry can improve aspects of offspring performance, most notably early embryo survival (egg hatching success). This improvement is widely attributed to genetic benefits which would arise if polyandrous females skew paternity to produce fitter offspring. In two separate experiments with field crickets (Teleogryllus commodus) polyandrous females (two, three or four mates) did not have higher egg hatching success than monandrous females (effect sizes: r = 0.03 and 0.08 for the respective experiments), which is consistent with our finding of no sire effect on hatching success. Polyandry also had no effect on post-hatching offspring survival. Polyandrous females' offspring took significantly longer to mature but their sons were not heavier and their daughters were actually significantly smaller than those of monandrous females. Finally, after controlling for relative male size, monandrous females' sons were more successful when directly competing for a mate.  相似文献   

6.
Multiple mating is thought to provide an opportunity for females to avoid the costs of genetic incompatibility by postcopulatory selection of compatible sperm haplotypes. Few studies have tested the genetic incompatibility hypothesis directly. Here we experimentally manipulated the compatibility of females with their mates using the gryllid cricket Teleogryllus oceanicus. We recorded the hatching success of eggs laid by females mated with two nonsibling males, two siblings, or one nonsibling male and one sibling. In contrast with two previous studies on crickets that have adopted this approach, the hatching success of eggs did not differ between females mated with two full siblings and females mated with two unrelated males, indicating that embryo viability was not a cost of inbreeding in this species. We assigned paternity to offspring produced by females mated to both a sibling and a nonsibling male using microsatellite markers. As in previous studies of this species, we were unable to detect any difference in the proportion of offspring sired by the 1st and the 2nd male to mate with a female when females were unrelated to their mates. However, in our experimental matings the proportion of offspring sired by the nonsibling male depended on his sequence position. Paternity was biased toward the nonsibling male when he mated first. Our data show that molecular analyses of paternity are essential to detect subtle mechanisms of postcopulatory sexual selection.  相似文献   

7.
Female promiscuity has broad implications for individual behaviour, population genetics and even speciation. In the field cricket Gryllus bimaculatus, females will mate with almost any male presented to them, despite receiving no recorded direct benefits. Previous studies have shown that female crickets can benefit from polyandry through increased hatching success of their eggs. There is evidence that this effect is driven by the potential of polyandrous females to avoid fertilizing eggs with sperm from genetically incompatible males. We provide direct evidence supporting the hypothesis that polyandry is a mechanism to avoid genetic incompatibilities resulting from inbreeding. Using microsatellite markers we examined patterns of paternity in an experiment where each female mated with both a related and an unrelated male in either order. Overall, unrelated males were more successful in gaining paternity than were related males, but this effect was driven by a much greater success of unrelated males when they were the first to mate.  相似文献   

8.
Females typically mate with more than one male despite the costs incurred, thus questioning Bateman's principle. A series of genetic benefits have been proposed to account for the evolution of polyandry, including the acquisition of viability genes for offspring. The 'intrinsic male quality' hypothesis suggests that polyandry increases the probability that females produce offspring sired by males that bestow high viability on their offspring. Heritable variation in viability is the basic requirement for the occurrence of this genetic benefit. By using a half-sib breeding design with a species of cricket in which polyandry is known to increase hatching success, we present clear experimental evidence that intrinsic male quality contributes to embryo viability. Despite recent support for the evolution of polyandry based on compatibility of genotypes between males and females, we show that hatching success is not determined by an interaction between paternal and maternal genotypes but rather that sons inherit paternal genes that influence the viability of eggs laid by their mates. Moreover, our data implicate a potential role for indirect genetic effects of male accessory gland products on embryo viability. Additive genetic contributions to embryo viability may be an important factor underlying the frequently observed benefits of polyandrous behaviour.  相似文献   

9.
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi‐natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.  相似文献   

10.
Pitcher TE  Rodd FH  Rowe L 《Genetica》2008,134(1):137-146
Several studies suggest that females may offset the costs of genetic incompatibility by exercising pre-copulatory or post-copulatory mate choice to bias paternity toward more compatible males. One source of genetic incompatibility is the degree of relatedness among mates; unrelated males are expected to be genetically more compatible with a female than her relatives. To address this idea, we investigated the potential for inbreeding depression and paternity biasing mechanisms (pre- and post-copulatory) of inbreeding avoidance in the guppy, Poecilia reticulata. Inbreeding resulted in a reduction in offspring number and quality. Females mated to siblings gave birth to significantly fewer offspring compared to females mated to non-siblings and inbred male offspring took longer to reach sexual maturity. There was no evidence of inbreeding avoidance in pre-copulatory behaviors of females or males. Sexual responsiveness of females to courting males and the number of sexual behaviors males directed at females did not decrease as a function of the relatedness of the two individuals. We also tested whether female guppies can use post-copulatory mechanisms to bias sperm usage toward unrelated males by comparing the number of offspring produced by females mated to two of their siblings (SS), two males unrelated to the female (NN), or to one unrelated male and a sibling male (NS). We found that NS females produced a number of offspring not significantly different than what would be expected if fertilization success were halfway between completely outbreeding (NN) and completely inbreeding (SS) females. This suggests that there is no significant improvement in the number of offspring produced by females mating to both related and unrelated males, relative to that which would be expected if sperm from both males were used equally. Our results suggest that female guppies do not discriminate against closely related males or their sperm.  相似文献   

11.
Sexual selection has traditionally been investigated assuming that male quality is as skewed as patterns of male reproductive success can sometimes be. Recently, female choice has been investigated under the model of genetic compatibility, which assumes that each individual female has her own 'best' mate and there is no overall optimal choice for all females. We investigated female mate choice in the newt species Triturus alpestris, a member of a genus where female choice has been investigated only within the context of the optimal male (female choice for condition-dependent traits). We provided females with two males that differed in one condition-dependent trait (body size) and overall genetic composition. Both male body size and female body size did not influence paternity, but the degree of genetic relatedness between females and potential mates did. Two components of fitness (fecundity and hatching success) did not differ between singly and multiply sired clutches, indicating that females do not employ polyandry as a means of increasing offspring fitness through genetic bet-hedging. Instead, we hypothesize that females may mate initially for fertility assurance, but prefer less-related males as the most genetically compatible mates.  相似文献   

12.
Abstract.— Females, by mating with more than one male in their lifetime, may reduce their risk of receiving sperm from genetically incompatible sires or increase their prospects of obtaining sperm from genetically superior sires. Although there is evidence of both kinds of genetic benefits in crickets, their relative importance remains unclear, and the extent to which experimentally manipulated levels of polyandry in the laboratory correspond to those that occur in nature remain unknown. We measured lifetime polyandry of free-living female decorated crickets, Gryllodes sigillatus , and conducted an experiment to determine whether polyandry leads to an increase in offspring viability. We experimentally manipulated both the levels of polyandry and opportunities for females to select among males, randomly allocating the offspring of experimental females to high-food-stress or low-food-stress regimes to complete their development. Females exhibited a high degree of polyandry, mating on average with more than seven different males during their lifetime and up to as many as 15. Polyandry had no effect on either the developmental time or survival of offspring. However, polyandrous females produced significantly heavier sons than those of monandrous females, although there was no difference in the adult mass of daughters. There was no significant interaction between mating treatment and offspring nutritional regimen in their effects on offspring mass, suggesting that benefits accruing to female polyandry are independent of the environment in which offspring develop. The sex difference in the extent to which male and female offspring benefit via their mother's polyandry may reflect possible differences in the fitness returns from sons and daughters. The larger mass gain shown by sons of polyandrous females probably leads to their increased reproductive success, either because of their increased success in sperm competition or because of their increased life span.  相似文献   

13.
Multiple mating allows females to obtain material (more sperm and nutrient) and/or genetic benefits. The genetic benefit models require sperm from different males to fertilize eggs competitively or the offspring be fathered by multiple males. To maximize genetic benefits from multiple mating, females have evolved strategies to prefer novel versus previous mates in their subsequent matings. However, the reproductive behavior during mate encounter, mate choice and egg laying in relation to discrimination and preference between sexes has been largely neglected. In the present study, we used novel and previous mate treatments and studied male and female behavior and reproductive output in Spodoptera litura. The results of this study do not support the sperm and nutrient replenishment hypotheses because neither the number of mates nor the number of copulations achieved by females significantly increased female fecundity, fertility and longevity. However, females showed different oviposition patterns when facing new versus previous mates by slowing down oviposition, which allows the last male has opportunities to fertilize her eggs and the female to promote offspring diversity. Moreover, females that have novel males present called earlier and more than females that have their previous mates present, whereas no significant differences were found on male courtship between treatments. These results suggest that S. litura females can distinguish novel from previous mates and prefer the former, whereas males generally remate regardless of whether the female is a previous mate or not. In S. litura, eggs are laid in large clusters and offspring competition, inbreeding and disease transfer risks are thus increased. Therefore, offspring diversity should be valuable for S. litura, and genetic benefits should be the main force behind the evolution of female behavioral strategies found in the present study.  相似文献   

14.
Why do females mate multiply? A review of the genetic benefits   总被引:14,自引:0,他引:14  
The aim of this review is to consider the potential benefits that females may gain from mating more than once in a single reproductive cycle. The relationship between non-genetic and genetic benefits is briefly explored. We suggest that multiple mating for purely non-genetic benefits is unlikely as it invariably leads to the possibility of genetic benefits as well. We begin by briefly reviewing the main models for genetic benefits to mate choice, and the supporting evidence that choice can increase offspring performance and the sexual attractiveness of sons. We then explain how multiple mating can elevate offspring fitness by increasing the number of potential sires that compete, when this occurs in conjunction with mechanisms of paternity biasing that function in copula or post-copulation. We begin by identifying cases where females use pre-copulatory cues to identify mates prior to remating. In the simplest case, females remate because they identify a superior mate and 'trade up' genetically. The main evidence for this process comes from extra-pair copulation in birds. Second, we note other cases where pre-copulatory cues may be less reliable and females mate with several males to promote post-copulatory mechanisms that bias paternity. Although a distinction is drawn between sperm competition and cryptic female choice, we point out that the genetic benefits to polyandry in terms of producing more viable or sexually attractive offspring do not depend on the exact mechanism that leads to biased paternity. Post-copulatory mechanisms of paternity biasing may: (1) reduce genetic incompatibility between male and female genetic contributions to offspring; (2) increase offspring viability if there is a positive correlation between traits favoured post-copulation and those that improve performance under natural selection; (3) increase the ability of sons to gain paternity when they mate with polyandrous females. A third possibility is that genetic diversity among offspring is directly favoured. This can be due to bet-hedging (due to mate assessment errors or temporal fluctuations in the environment), beneficial interactions between less related siblings or the opportunity to preferentially fertilise eggs with sperm of a specific genotype drawn from a range of stored sperm depending on prevailing environmental conditions. We use case studies from the social insects to provide some concrete examples of the role of genetic diversity among progeny in elevating fitness. We conclude that post-copulatory mechanisms provide a more reliable way of selecting a genetically compatible mate than pre-copulatory mate choice. Some of the best evidence for cryptic female choice by sperm selection is due to selection of more compatible sperm. Two future areas of research seem likely to be profitable. First, more experimental evidence is needed demonstrating that multiple mating increases offspring fitness via genetic gains. Second, the role of multiple mating in promoting assortative fertilization and increasing reproductive isolation between populations may help us to understand sympatric speciation.  相似文献   

15.
Mating rate has important implications for patterns of sexual selection and sexual conflict and hence for issues such as speciation and the maintenance of genetic diversity. Knowledge of natural mating rates can provide insights into the factors driving female mating behaviour. We investigated the level of polyandry in a Spanish population of the field cricket Gryllus bimaculatus using microsatellite markers. Two approaches were employed: (i) genotyping the offspring of wild-caught gravid females to determine the number of males siring the brood and (ii) genotyping sperm stored in the spermathecae of females mated in the wild to estimate the number of mating partners. We compared existing methods for inferring the minimum and probable number of fathers and described a novel probabilistic technique estimating the number of mates by genotyping stored sperm. Using the most conservative allele-counting method, 71% of females produced offspring sired by at least two males (a minimum mean of 2.4 fathers per clutch), and all females had mated to at least two males with minimum mean estimates of 2.7-5.1 mates per female. Our study reveals high levels of polyandry in the wild and suggests that females mate with more males than sire their offspring.  相似文献   

16.
The consequences of polyandry for female fitness are controversial. Sexual conflict studies and a meta‐analysis of mating rates in insects suggest that there is a longevity cost when females mate repeatedly. Even so, compensatory material benefits can elevate egg production and fertility, partly because polyandry ensures an adequate sperm supply. Polyandry can therefore confer direct benefits. The main controversy surrounds genetic benefits. The argument is analogous to that surrounding the evolution of conventional female mate choice, except that with polyandry it is post‐copulatory mechanisms that might bias paternity towards males with higher breeding values for fitness. Recent meta‐analyses of extra‐pair copulations in birds have cast doubt on whether detectable genetic benefits exist. By contrast, another meta‐analysis showed that polyandry elevates egg hatching success (possibly due to a fertilization bias towards sperm with paternal genes that elevate embryo survival) in insects. A detailed summary of whether polyandry elevates other components of offspring performance is lacking. Here we present a comprehensive meta‐analysis of 232 effect sizes from 46 experimental studies. These experiments were specifically designed to try to quantify the potential genetic benefits of polyandry by controlling fully for the number of matings by females assigned to monandry and polyandry treatments. The bias‐corrected 95% confidence intervals for egg hatching success (d = ?0.01 to 0.61), clutch production (d = 0.07 to 0.45) and fertility (d = 0.04 to 0.40) all suggest that polyandry has a beneficial effect (although P values from parametric tests were marginally non‐significant at P = 0.075, 0.052 and 0.058, respectively). Polyandry was not significantly beneficial for any single offspring performance trait (e.g. growth rate, survival, adult size), but the test power was low due to small sample sizes (suggesting that many more studies are still needed). We then calculated a composite effect size that provides an index of general offspring performance. Depending on the model assumptions, the mean effect of polyandry was either significantly positive or marginally non‐significant. A possible role for publication bias is discussed. The magnitude of the reported potential genetic benefits (d = 0.07 to 0.19) are larger than those from two recent meta‐analyses comparing offspring sired by social and extra‐pair mates in birds (d = 0.02 to 0.04). This difference raises the intriguing possibility that cryptic, post‐copulatory female choice might be more likely to generate ‘good gene’ or ‘compatible gene’ benefits than female choice of mates based on the expression of secondary sexual traits.  相似文献   

17.
Although mating is costly, multiple mating by females is a taxonomically widespread phenomenon. Theory has suggested that polyandry may allow females to gain genetic benefits for their offspring, and thus offset the costs associated with this mating strategy. For example, the good sperm hypothesis posits that females benefit from mating multiply when genetically superior males have increased success in sperm competition and produce high quality offspring. We applied the powerful approach of experimental evolution to explore the potential for polyandry to drive evolutionary increases in female fitness in house mice, Mus domesticus. We maintained polygamously mated and monogamously mated selection lines of house mice for 14 generations, before determining whether selection history could account for divergence in embryo viability. We found that males from lineages evolving with post-copulatory sexual selection sire offspring with increased viability, suggesting that polyandry results in the production of higher quality offspring and thus provides long-term fitness benefits to females.  相似文献   

18.
Several studies suggest that polyandrous females bias paternity in favor of unrelated males to avoid inbreeding depression. Here we tested whether the migratory locust biases sperm usage toward unrelated males by analyzing the paternity of offspring from females mated with either two siblings, or two nonsiblings, or a sibling and a nonsibling in either order. We found that the eggs of females mated only with siblings had decreased hatching success. When females mated with both a nonsibling and a sibling, egg hatchability was significantly increased. Subsequent paternity analyses found no evidence that females could avoid fertilization by sibling males. Therefore, improvement of the hatchability of eggs sired by siblings suggests that rather than biased fertilization by females toward genetically compatible or superior males, male-induced maternal effects or direct effects of male ejaculates might influence the survival of offspring sired by related males.  相似文献   

19.
Females of many organisms mate more than once and with more than one male, suggesting that polyandry confers some advantage to the female or her offspring. However, variation in maternal investment in response to mate choice and mate number can confound efforts to determine if there are benefits of polyandry. Access to multiple mates could increase maternal investment in offspring via a number of different mechanisms. Few studies have determined if investment is influenced by mate choice and number, and data are particularly lacking for marine invertebrates. This study was designed to determine if maternal investment and offspring size increase with access to increasing numbers of mates in the protandrous intertidal slipper snail Crepidula cf. marginalis. Virgin female slipper limpets were exposed to one, three, or five potential mates and their fecundity, egg size, and hatchling size were measured for multiple clutches. Treatment had a significant effect on fecundity, with fecundity increasing with the number of potential mates. Treatment did not have an effect on the size of eggs or hatchlings, on the variation in egg size or hatchling size within broods, or on the frequency of oviposition. Treatment did alter the variation in average offspring size among females, but not in the way predicted by theory. The main result, that access to multiple mates does not have an effect on per offspring maternal investment, makes C. cf. marginalis an ideal candidate to study the effects of polyandry on offspring fitness without having to take into account confounding effects of variation in maternal investment.  相似文献   

20.
Numerous studies have reported that females benefit from mating with multiple males (polyandry) by minimizing the probability of fertilization by genetically incompatible sperm. Few, however, have directly attributed variation in female reproductive success to the fertilizing capacity of sperm. In this study we report on two experiments that investigated the benefits of polyandry and the interacting effects of males and females at fertilization in the free-spawning Australian sea urchin Heliocidaris erythrogramma. In the first experiment we used a paired (split clutch) experimental design and compared fertilization rates within female egg clutches under polyandry (eggs exposed to the sperm from two males simultaneously) and monandry (eggs from the same female exposed to sperm from each of the same two males separately). Our analysis revealed a significant fertilization benefit of polyandry and strong interacting effects of males and females at fertilization. Further analysis of these data strongly suggested that the higher rates of fertilization in the polyandry treatment were due to an overrepresentation of fertilizations due to the most compatible male. To further explore the interacting effects of males and females at fertilization we performed a second factorial experiment in which four males were crossed with two females (in all eight combinations). In addition to confirming that fertilization success is influenced by male x female interactions, this latter experiment revealed that both sexes contributed significant variance to the observed patterns of fertilization. Taken together, these findings highlight the importance of male x female interactions at fertilization and suggest that polyandry will enable females to reduce the cost of fertilization by incompatible gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号