首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.  相似文献   

2.
Mucins are macromolecules lying the cells in contact with external environment and protect the epithelium against constant attacks such as digestive fluids, microorganisms, pollutants, and toxins. Mucins are the main components of mucus and are synthesized and secreted by specialized cells of the epithelium (goblet cells, cells of mucous glands) or non mucin-secreting cells. Human mucin genes show common features: large size of their mRNAs, large nucleotide tandem repeat domains, complex expression both at tissular and cellular level. Since 1987, 21 MUC symbols have been used to designate genes encoding O-glycoproteins containing tandem repeat domains rich in serine, threonine and proline. Some of these genes encode true mucins while others encode non mucin adhesion O-glycoproteins. In this paper, we propose a classification based on sequence similarities and expression areas. Two main families can be distinguished: secreted mucins or gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6), and membrane-bound mucins (MUC1, MUC3, MUC4, MUC12, MUC17). Muc-deficient mice will provide important models in the study of functional relationships between these two mucin families.  相似文献   

3.
Yonezawa S  Goto M  Yamada N  Higashi M  Nomoto M 《Proteomics》2008,8(16):3329-3341
Mucins are high molecular weight glycoproteins that play important roles in carcinogenesis or tumor invasion. To clarify the relationship of the expression patterns of mucins in human neoplasms with their biological behavior, we examined the expression profiles of MUC1, MUC2, and MUC4 mucins in various human neoplasms using immunohistochemistry and in situ hybridization, and compared them with clinicopathologic factors including outcome of the patients. MUC1 or MUC4 expression is related with the aggressive behavior of human neoplasms and a poor outcome of the patients. In contrast, MUC2 expression tends to be related with the indolent behavior of human neoplasms and a favorable outcome of the patients, although indolent pancreatobiliary neoplasms sometimes show invasive growth with MUC1 expression in the invasive areas. The expression of MUC2 mucin in indolent pancreatobiliary neoplasms coincided with expression of MUC2 mRNA. Our recent studies to clarify the MUC2 gene regulation mechanism disclosed that DNA methylation and histone modification in the 5' flanking region of the MUC2 promoter may play an important role. Further studies of the epigenetics also in MUC1 and MUC4 gene expression may be needed to understand the relationship between the expression of mucins in human neoplasms with their biological behavior.  相似文献   

4.
Mucin glycoproteins in neoplasia   总被引:30,自引:0,他引:30  
Mucins are high molecular weight glycoproteins that are heavily glycosylated with many oligosaccharide side chains linked O-glycosidically to the protein backbone. With the recent application of molecular biological methods, the structures of apomucins and regulation of mucin genes are beginning to be understood. At least nine human mucin genes have been identified to date. Although a complete protein sequence is known for only three human mucins (MUC1, MUC2, and MUC7), common motifs have been identified in many mucins. The pattern of tissue and cell-specific expression of these mucin genes are emerging, suggesting a distinct role for each member of this diverse mucin gene family. In epithelial cancers, many of the phenotypic markers for pre-malignant and malignant cells have been found on the carbohydrate and peptide moieties of mucin glycoproteins. The expression of carbohydrate antigens appears to be due to modification of peripheral carbohydrate structures and the exposure of inner core region carbohydrates. The expression of some of the sialylated carbohydrate antigens appears to correlate with poor prognosis and increased metastatic potential in some cancers. The exposure of peptide backbone structures of mucin glycoproteins in malignancies appears to be due to abnormal glycosylation during biosynthesis. Dysregulation of tissue and cell-specific expression of mucin genes also occurs in epithelial cancers. At present, the role of mucin glycoproteins in various stages of epithelial cell carcinogenesis (including the preneoplastic state and metastasis), in cancer diagnosis and immunotherapy is under investigation.  相似文献   

5.

Background

The mucins found as components of mucus gel layers at mucosal surfaces throughout the body play roles in protection as part of the defensive barrier on an organ and tissue specific basis.

Scope of the review

The human MUC gene family codes up to 20 known proteins, which can be divided into secreted and membrane-associated forms each with a typical protein domain structure. The secreted mucins are adapted to cross link in order to allow formation of the extended mucin networks found in the secreted mucus gels. The membrane-associated mucins possess membrane specific domains which enable their various biological functions as part of the glycocalyx. All mucins are highly O-glycosylated and this is tissue specific and linked with specific biological functions at these locations. Mucin biology is dynamic and the processes of degradation and turnover are well integrated with biosynthesis to maintain a continuous mucosal protection against all external aggressive forces. Interaction of mucins with microflora plays an important role in normal function. Mucins are modified in a variety of diseases and this may be due to abberant mucin peptide or glycosylation.

Major conclusions

Mucins represent a family of glycoprotein having fundamental roles in mucosal protection and communication with external environment.

General significance

The review emphasises the nature of mucins as glycoproteins and their role in presenting an array of glycan structures at the mucosal cell surface.  相似文献   

6.
7.
Mucins are important glycoproteins in the mucociliary transport system of the middle ear and Eustachian tube. Little is known about mucin expression within this system under physiological and pathological conditions. This study demonstrated the expression of MUC5B, MUC5AC, MUC4, and MUC1 in the human Eustachian tube, whereas only MUC5B mucin expression was demonstrated in noninflamed middle ears. MUC5B and MUC4 mucin genes were upregulated 4.2- and 6-fold, respectively, in middle ears with chronic otitis media (COM) or mucoid otitis media (MOM). This upregulation of mucin genes was accompanied by an increase of MUC5B- and MUC4-producing cells in the middle ear mucosa. Electron microscopy of the secretions from COM and MOM showed the presence of chainlike polymeric mucin. These data indicate that the epithelium of the middle ear and Eustachian tube expresses distinct mucin profiles and that MUC5B and MUC4 mucins are highly produced and secreted in the diseased middle ear. These mucins may form thick mucous effusion in the middle ear cavity and compromise the function of the middle ear.  相似文献   

8.
Mucins are an important class of complex glycoproteins expressed by many epithelial cells and their malignant counterparts. The aim of this study was to determine the serum levels of MUC3 and mucin-like carcinoma-associated antigen (MCA) in patients with primary breast cancer and to analyze the possible relationships between these two mucins and the steroid receptor status. The preoperative basal serum levels of MUC3 (ELISA assay with monoclonal antibody 1143/B7) and MCA (EIA assay with anti-MCA mouse monoclonal antibody b-12) were determined in 44 patients with breast cancer while estrogen receptor (ER) and progesterone receptor (PgR) levels were measured by the dextran-coated charcoal method in the cytosol of neoplastic tissue. MUC3 was expressed in 43/44 serum samples while high MCA serum levels were found in 16/44 only; the mean values of both markers did not correlate with menopausal status, tumor size, nodal involvement or ER. The only significant difference observed was a lower median value of MCA in patients with small tumors (T1-T2). No statistically significant correlation between MUC3 and MCA, MUC3 and ER or MCA and ER was observed; a statistically significant direct correlation between MUC3 and PgR+ status and a statistically significant inverse correlation between MCA and PgR+ were observed. Our results suggest that further investigations are necessary to establish whether progesterone can modulate MUC3 and MCA expression in breast cancer.  相似文献   

9.
The membrane-bound mucins belong to an ever-increasing family of O-glycoproteins. Based on their structure and localization at the cell surface they are thought to play important biological roles in cell–cell and cell–matrix interactions, in cell signalling and in modulating biological properties of cancer cells. Among them, MUC1 and MUC4 mucins are best characterized. Their altered expression in cancer (overexpression in the respiratory, gastro-intestinal, urogenital and hepato-biliary tracts) indicates an important role for these membrane-bound mucins in tumour progression, metastasis, cancer cell resistance to chemotherapeutics drugs and as specific markers of epithelial cancer cells. Some mechanisms responsible for MUC1 and MUC4 role in tumour cell properties have been deciphered recently. However, much remains to be done in order to understand the molecular mechanisms and signalling pathways that control the expression of membrane-bound mucins during the different steps of tumour progression toward adenocarcinoma and evaluate their potential as prognostic/diagnostic markers and as therapeutic tools. In this review we focus on the molecular mechanisms and signalling pathways known to control the expression of membrane-bound mucins in cancer. We will discuss the mechanisms of regulation at the promoter level (including genetic and epigenetic modifications) that may be responsible for the mucin altered pattern of expression in epithelial cancers.  相似文献   

10.

Introduction

Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs.

Method

In the present study, we investigated the functional and mechanistic roles of MUC4 in potentiating pathogenic signals including EGFR family proteins to promote TNBC aggressiveness using in vitro and in vivo studies. Further, we studied the expression of MUC4 in invasive TNBC tissue and normal breast tissue by immunostaining.

Results

MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-γ, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue.

Conclusions

MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.  相似文献   

11.
In cancer, mucins are aberrantly O-glycosylated, and consequently, they express tumor-associated antigens such as the Tn determinant (alpha-GalNAc-O-Ser/Thr). As compared with normal tissues, they also exhibit a different pattern of expression. In particular, MUC6, which is normally expressed only in gastric tissues, has been detected in intestinal, pulmonary, colorectal, and breast carcinomas. Recently, we have shown that the MCF7 breast cancer cell line expresses MUC6-Tn glycoproteins in vivo. Cancer-associated mucins show antigenic differences from normal mucins, and as such, they may be used as potential targets for immunotherapy. To develop anticancer vaccines based on the Tn antigen, we prepared several MUC6-Tn glycoconjugates. To this end, we performed the GalNAc enzymatic transfer to two recombinant MUC6 proteins expressed in Escherichia coli, using UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), which catalyze in vivo the Tn antigen synthesis. We used either a mixture of ppGalNAc-Ts from MCF7 breast cancer cell extracts or a recombinant ppGalNAc-T1. In both cases, we achieved the synthesis of MUC6-Tn glycoconjugates at a semi-preparative scale (mg amounts). These glycoproteins displayed a high level of Tn antigens, although the overall density depends on both enzyme source and protein acceptor. These MUC6-Tn glycoconjugates were recognized by two anti-Tn monoclonal antibodies that are specific to human cancer cells. Moreover, the MUC6-Tn glycoconjugate glycosylated using MCF7 extracts as the ppGalNAc-T source was able to induce immunoglobulin G (IgG) antibodies that recognized a human tumor cell line. In conclusion, the large-scaled production of MUC6 with tumor-relevant glycoforms holds considerable promise for developing effective anticancer vaccines, and further studies of their immunological properties are warranted.  相似文献   

12.
Mucins are heavily glycosylated proteins with high molecular mass, and are involved in various diseases including infection, inflammation, and cancer. As easy separation method, such as gel electrophoresis, however, does not exist for mucins, due to their large molecular sizes and heterogeneities. In 2009, we published a supported molecular matrix electrophoresis (SMME) method that can be used to characterize mucins. For SMME analysis, mucins have been enriched by ultrafiltration of trypsin digests using a 100 KDa cutoff filter. However, this enrichment results in a loss of protein identification capability using proteomic approaches. In this study, we describe a simple enrichment of mucins without trypsinization for SMME analysis. The enrichment was developed using a porcine submandibular gland and then was applied to study and compare mouse submandibular glands between young and aged mice. From mouse submandibular glands, hyaluronic acid and some mucins were observed by SMME. One of the mucins was identified as MUC10 by proteomic analysis of the band on the SMME membrane and immunostaining using anti-MUC10 antibody. A major O-glycan of MUC10 was determined to be NeuAcα2-3Galβ1-3GalNAc. Furthermore, our experiments revealed that the concentrations of these molecules were lower in aged mice than in young mice, and that an unknown mucin-like molecule was detected only from the aged mouse submandibular gland.  相似文献   

13.
Mucins are synthesized and secreted by many epithelia. They are complex glycoproteins that offer cytoprotection. In their functional configuration, mucins form oligomers by a biosynthetic process that is poorly understood. A family of four human gastrointestinal mucin genes (MUC2, MUC5AC, MUC5B, and MUC6) is clustered to chromosome 11p15.5. To study oligomerization of these related mucins, we performed metabolic labeling experiments with [35S]amino acids in LS174T cells, and isolated mucin precursors by specific immunoprecipitations that were analyzed on SDS-PAGE. Each of the precursors of MUC2, MUC5AC, MUC5B, and MUC6 formed a single species of disulfide-linked homo-oligomer within 1 h after pulse labeling. Based on apparent molecular masses, these oligomeric precursors were most likely dimers. Inhibition of vesicular RER-to-Golgi transport, with brefeldin A and CCCP, did not affect the dimerization of MUC2 precursors, localizing dimerization to the RER. O-Glycosylation of MUC2 followed dimerization. Inhibition of N- glycosylation by tunicamycin retarded, but did not inhibit, dimerization, indicating that N-glycans play a role in efficient dimerization of MUC2 precursors. Based on sequence homology, the ability of MUC2, MUC5AC, MUC5B and MUC6 to dimerize most likely resides in their C-terminal domains. Thus, the RER-localized dimerization of secretory mucins likely proceeds by similar mechanisms, which is an essential step in the formation of the human gastrointestinal mucus- gels.   相似文献   

14.
Mucin secreted by mucosal epithelial cells plays a role in the protection of the mucosal surface and also is involved in pathological processes. So far, MUC1-4, 5AC, 5B, 6-8, 11-13 and 15-17 genes coding the backbone mucin core protein have been identified in humans. Their diverse physiological distribution and pathological alterations have been reported. Trefoil factor family (TFF) peptides are mucin-associated molecules co-expressed with MUC mucins and involved in the maintenance of mucosal barrier and the biological behavior of epithelial and carcinoma cells. Intrahepatic biliary system is a route linking the bile canaliculi and the extrahepatic bile duct for the excretion of bile synthesized by hepatocytes. Biliary epithelial cells line in the intrahepatic biliary system, secreting mucin and other molecules involved in the maintenance and regulation of the system. In this review, the latest information regarding properties, expression profiles and regulation of MUC mucins and TFF peptides in the intrahepatic biliary system is summarized. In particular, we focus on the expression profiles and their significance of MUC mucins in developmental and normal livers, various hepatobiliary diseases and intrahepatic cholangiocarcinoma.  相似文献   

15.
Identification of MUC1 proteolytic cleavage sites in vivo   总被引:9,自引:0,他引:9  
Mucins are high molecular weight glycoproteins that provide a protective layer on epithelial surfaces and are involved in cell-cell interactions, signaling, and metastasis. The identification of several membrane-tethered mucins, including MUC1, MUC3, MUC4, and MUC12, has incited interest in the processing of these mucins and the mechanisms that govern their release from the cell surface. MUC1 consists of an extracellular subunit and a membrane-associated subunit. The two moieties are produced from a single precursor polypeptide by an early proteolytic cleavage event but remain associated throughout intracellular processing and transport to the cell surface. We identified the MUC1 proteolytic cleavage site and showed it to be identical in pancreas and colon cell lines and not to be influenced by the presence of heavily glycosylated tandem repeats. The MUC1 cleavage site shows homology with sequences in other cell-surface-associated proteins and may represent a common mechanism for processing of these molecules.  相似文献   

16.
Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMNs). Our immunohistochemistry (IHC) studies have shown a consensus position on mucin expression profiles in pancreatic neoplasms as follows: MUC1-positive but MUC2-negative expression in PDACs; MUC1-negative but MUC2-positive expression in intestinal-type IPMNs (dangerous type); MUC1-negative and MUC2-negative expression in gastric-type IPMNs (safe type); High MUC4 expression in PDAC patients with a poor outcome; and MUC4-positive expression in intestinal-type IPMNs. We also showed that three mucin genes (MUC1, MUC2 and MUC4) expression in cancer cell line was regulated by DNA methylation. We have developed a novel ‘methylation-specific electrophoresis (MSE)’ method to analyze the DNA methylation status of mucin genes by high sensitivity and resolution. By using the MSE method, we evaluated pancreatic juice samples from 45 patients with various pancreatic lesions. The results were compared with final diagnosis of the pancreatic lesions including IHC of mucin expression in the paired pancreatic tissues. The results indicated that the DNA methylation status of MUC1, MUC2 and MUC4 in pancreatic juice matched with the mucin expression in tissue. Analyses of the DNA methylation status of MUC1, MUC2 and MUC4 were useful for differential diagnosis of human pancreatic neoplasms, with specificity and sensitivity of 87% and 80% for PDAC; 100% and 88% for intestinal-type IPMN; and 88% and 77% for gastric-type IPMN, respectively. In conclusion, MSE analysis of human pancreatic juice may provide useful information for selection of treatment for pancreatic neoplasms.  相似文献   

17.
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.  相似文献   

18.
The complexity of mucins   总被引:19,自引:0,他引:19  
Mucins represent the main components of gel-like secretions, or mucus, secreted by mucosae or some exocrine glands. These high-molecular-weight glycoproteins are characterized by the large number of carbohydrate chains O-glycosidically linked to the peptide. The determination of mucin molecular weight and conformation has been controversial for several reasons: 1) the methods used to solubilize mucus and to purify mucins are different and 2) the molecules have a strong tendency to aggregate or to bind to other molecules (peptides or lipids). Recently, electron microscopy has shown the filamentous shape of most mucins and their polydisperse character which, in some secretions, might correspond to a polymorphism of the peptide part of these molecules. The recent development of high pressure liquid chromatography and high-resolution proton NMR spectroscopy has allowed major progress in the structural study of mucin carbohydrate chains. These chains may have from 1 to about 20 sugars and bear different antigenic determinants, such as A, B, H, I, i, X, Y or Cad antigens. In some mucins, such as human respiratory mucins, the carbohydrate chain diversity is remarkable, which raises many questions. Mucins are molecules located at the interface between mucosae and the external environment. The carbohydrate chain diversity might allow many interactions between mucins and microorganisms and play a major role in the colonization or the defense of mucosae.  相似文献   

19.
Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p?相似文献   

20.
Transcriptional activation of the MUC2 gene by p53   总被引:6,自引:0,他引:6  
MUC2 is one of the major components of mucins that provide a protective barrier between epithelial surfaces and the gut lumen. We investigated possible alterations of MUC2 gene expression by p53 and p21(Sdi1/Waf1/Cip1) in a human colon cancer cell line, DLD-1, establishing subclones in which a tetracycline-regulatable promoter controls exogenous p53 and p21 expression. MUC2 mRNA more significantly increased in response to p53 than to p21. Unexpectedly, MUC2 expression was also induced in human osteosarcoma cells, U-2OS and Saos-2, by exogenous p53. We next performed a reporter assay to test the direct regulation of MUC2 gene expression by p53. Deletion and mutagenesis of the MUC2 promoter region showed that it contains two sites for transactivation by p53. Furthermore, an electrophoretic mobility shift assay indicated that p53 binds to those elements. We analyzed MUC2 expression in other cell types possessing a functional p53 after exposure to various forms of stress. In MCF7 breast cancer and A427 lung cancer cells, MUC2 expression was increased along with the endogenous p53 level by actinomycin D, UVC, and x-ray, but not in RERF-LC-MS lung cancer cells carrying a mutated p53. These results suggest that p53 directly activates the MUC2 gene in many cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号