首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
At concentrations greater than or equal to 100 microM, phencyclidine (PCP), N-(1-(2-thienyl)-cyclohexyl)piperidine (TCP), and MK-801 induced [3H]dopamine release from dissociated cell cultures of rat mesencephalon. This release was Ca2+ independent and tetrodotoxin insensitive. Tetrodotoxin (2 microM) itself had no effect on spontaneous release of [3H]dopamine. [3H]Dopamine release was induced by 1,3-di(2-tolyl)guanidine, a sigma ligand, and by 4-aminopyridine (1-3 mM), a K+ channel blocker. No stereoselectivity was observed for [3H]dopamine release evoked by the dioxadrol enantiomers, dexoxadrol, and levoxadrol, or by enantiomers of N-allylnormetazocine (SKF 10,047). The selective dopamine uptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909) did not affect spontaneous or TCP-evoked [3H]dopamine release. Together, these data suggest that the dopamine-releasing effects of PCP-like compounds on the mesencephalic cells were not mediated by actions at the PCP receptor or sigma binding site, Ca2+, or Na+ channels, or at the high affinity dopamine uptake site. It remains conceivable that blocking actions of PCP-like compounds at voltage-regulated K+ channels may at least partly explain the response. These results are discussed in comparison with findings in intact brain.  相似文献   

2.
Glutamate is proved to be a neurotransmitter in the mammalian cochlea, transmitting signals between the inner hair cells and the afferent cochlear nerve terminals. The transmission in this synapse is modulated by the lateral olivocochlear efferent fibers by releasing dopamine and other neurotransmitters. This study undertakes to measure simultaneously the release of dopamine and glutamate from isolated guinea pig cochleae. We combined the in vitro microvolume superfusion method, that uses liquid scintillation analysis, to measure [3H]dopamine with high pressure liquid chromatography (HPLC) to determine the glutamate content of the superfusate at rest and during stimulation. The release of both neurotransmitters was significantly increased when electrical field stimulation was applied at a 10 Hz rate. The nonselective sodium-channel inhibitor tetrodotoxin (TTX) at 1 microM completely blocked the effect of stimulation, indicating the neural origin of both dopamine and glutamate. The dopamine receptor antagonist sulpiride at 100 microM and the dopamine receptor agonist bromocriptine at 20 microM did not change the release of glutamate. In contrast, both bromocriptine and sulpiride significantly increased the stimulation-evoked release of dopamine. The effect of sulpiride is most likely due to the blockade of dopamine autoreceptor. Possible explanations why bromocriptine increased the release include: (1) its partional agonist activity; (2) desensitizations of dopamine autoreceptors; or (3) the higher D1 receptor activity of bromocriptine than sulpiride. This study could provide further insights about the role of dopamine and glutamate in cochlear neurotransmission.  相似文献   

3.
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.  相似文献   

4.
Abstract— The effects of l -glutamate and a number of structural analogues on the spontaneous release of [3H]dopamine from slices of rat striatum were examined. Glutamate, and other excitatory amino acids produced a marked stimulation of [3H]DA release which was Ca2+-dependent and unaffected by either procaine or tetrodotoxin. The glutamate-stimulated release was abolished in kainate-lesioned striatum. The action of glutamate was effectively antagonised by glutamamate diethylester and 2-amino-4-phosphonobutyric acid, but only weakly by l -methionine- dl -sulfoximine. Other proposed amino acid antagonists were inactive. The likely site of the releasing action of l -glutamate on presynaptic sites on nigro-striatal DA terminals is discussed.  相似文献   

5.
We have studied the glutamate modulation of gamma-[3H]aminobutyric acid ([3H]GABA) release from GABAergic dendrites of the external plexiform layer of the olfactory bulb and from GABAergic axons of the substantia nigra. In the olfactory bulb, [3H]GABA release was induced by high K+ and kainate, and not by aspartate and glutamate alone. However, when the tissue was conditioned by a previous K+ depolarization, glutamate and aspartate caused [3H]GABA release. The effect of glutamate was significantly enhanced when the GABA uptake mechanism was blocked by nipecotic acid. N-Methyl-D-aspartate and quisqualate did not cause [3H]GABA release under the same conditions. The acidic amino acid receptor antagonist 2-amino-4-phosphonobutyric acid and the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovaleric acid significantly inhibited the K+-glutamate- and the kainate-induced [3H]GABA release. Mg2+ (5 mM), which blocks the N-methyl-D-aspartate receptors, significantly inhibited the K+-glutamate-induced but not the kainic acid-induced [3H]GABA release. The K+-glutamate-stimulated release, but not the K+-stimulated [3H]GABA release, was strongly inhibited by Na+-free solutions or by 300 nM tetrodotoxin. Apparently the glutamate-induced release of [3H]GABA occurs through an interneuron because it is dependent on the presence of nerve conduction. In the substantia nigra no [3H]GABA release was elicited by any of the glutamate agonists tested. The present results clearly differentiate between the effects of glutamate on the release of [3H]GABA from the substantia nigra and from the olfactory bulb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
An in vitro model of ischemia was utilized to study the effects of both oxygen and glucose depletion on transmitter release from rat striatal slices. The spontaneous and stimulation-evoked releases of tritiated dopamine, gamma-aminobutyric acid, glutamate, and acetylcholine were measured. Hypoxia increased the evoked release of glutamate and dopamine without effect on the resting release. In contrast, hypoglycemia itself increased the resting release of dopamine. Hypoxia in combination with hypoglycemia provoked a massive release of glutamate, dopamine, and gamma-aminobutyric acid. The effect on acetylcholine release was less pronounced. Ca2+ withdrawal partly reduced the effect of hypoxia combined with hypoglycemia on dopamine release and application of tetrodotoxin (1 microM) abolished it. MK-801 (3 microM), an N-methyl-D-aspartate receptor antagonist, attenuated the effect of hypoxia and hypoglycemia on [3H]dopamine release. omega-Conotoxin (0.1 microM) had a similar effect on stimulation-evoked release under a hypoxic condition. The D2 receptor antagonist sulpiride (100 microM) failed to enhance the release of [3H]acetylcholine in hypoxia combined with hypoglycemia. It was suggested that in response to hypoxia combined with hypoglycemia there is a massive release of glutamate due to the increased firing rate which in turn releases dopamine from the axon terminals through stimulation of presynaptic N-methyl-D-aspartate receptors. Dopaminergic inhibitory control on ACh release seems not to be operative under conditions of hypoxia combined with hypoglycemia.  相似文献   

7.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of tityustoxin (TsTX) on the release of [3H] dopamine in rat brain prefrontal cortical slices was investigated. The stimulatory effect of TsTX was dependent on incubation time and TsTX concentration with an EC50 of 0.05 microM. The release of [3H] dopamine stimulated by TsTX is dependent of Na+ channels and thus, was completely, inhibited by tetrodotoxin. Tityustoxin-induced release of [3H] dopamine was not blocked by ethylene glycol-bis(beta-aminoethyl) ether (EGTA) and thus was independent of extracellular calcium. However, [3H] dopamine release induced by TsTX was inhibited by 52% by BAPTA, a calcium chelator. Moreover, dantrolene (100 microM) and tetracaine (500 microM) partially inhibited by 38 and 29%, respectively, the tityustoxin-induced release of [3H] dopamine from prefrontal cortical slices suggesting a role from intracellular calcium increase. In conclusion, part of the TsTX-induced release [3H] dopamine may be due to an effect of the toxin on the reversal of the dopamine transporter (DAT), but the majority of the toxin stimulated release of [3H] dopamine involves the mobilization of intracellular calcium stores.  相似文献   

9.
The effects of both (-)- and (+)-nicotine isomers were examined on in vitro uptake and release of [3H]dopamine in rat striatum. Both isomers inhibited uptake of [3H]dopamine in chopped tissue at concentrations well below those necessary for promoting release of preloaded [3H]dopamine. (-)-Nicotine was more potent than (+)-nicotine both at inhibiting uptake and at promoting release. Unlike other dopamine uptake inhibitors, however, nicotine inhibited only 50% of the total uptake. In the presence of 1 nM nicotine, the residual [3H]dopamine uptake was less sensitive to inhibition by cocaine than uptake in the absence of nicotine. Nicotine did not compete against the binding of [3H]GBR 12935, a selective dopamine uptake inhibitor. The nicotinic receptor agonists carbachol and 1,1-dimethyl-4-phenylpiperazinium iodide also inhibited uptake, whereas the nicotinic antagonists chlorisondamine and mecamylamine blocked nicotine's effect. Thus, the effect of nicotine on dopamine uptake appears to be mediated by a receptor similar to the nicotinic acetylcholine receptor. These receptors do not seem to be on the terminals that are accumulating dopamine, however, since tetrodotoxin prevented the effect of nicotine on [3H]dopamine uptake and nicotine had no effect on uptake in a synaptosomal preparation.  相似文献   

10.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

11.
Dissociated cell cultures derived from whole brains of foetal rats (17 days of gestation) were maintained for periods of up to 21 days in vitro for the purpose of studying the transmitter-releasing properties of the dopaminergic neuronal cells and glial cells. In the neuron-enriched cultures, after 3 days in vitro, [3H]dopamine was released in response to depolarizing stimuli. Both the potassium and veratrine-evoked release of dopamine was Ca2+ dependent. Veratrine-evoked release was reduced in the presence of the calcium channel blocker verapamil and was tetrodotoxin sensitive. Glial cultures, after 7 days in vitro, did not respond to any depolarizing stimuli, although they displayed a significant ability to take up [3H]dopamine. Comparison between static incubations and perfused cultures showed no difference in the patterns of release resulting from veratrine stimulation. Tyrosine hydroxylase activity increased progressively in neuron-enriched cultures but was not detectable in glial cultures. These results show that neuron-enriched cultures respond to depolarizing stimuli in a manner similar to excised adult basal ganglia tissue, with the appearance of functional ionic channels after 3 days in vitro.  相似文献   

12.
Using a sensitive perfusion system we have studied the nicotine-induced release of [3H]dopamine ([( 3H]DA) from striatal synaptosomes. Nicotine-evoked release was concentration dependent with an EC50 of 3.8 microM. The response to 1 microM nicotine was comparable to that to 16 mM K+; 10 microM veratridine evoked a larger response. All three stimuli were Ca2+ dependent but only the response to veratridine was blocked by tetrodotoxin. Repetitive stimulations by 1 microM (-)-nicotine (100 microliters) at 30-min intervals resulted in similar levels of [3H]DA release; higher concentrations of (-)-nicotine resulted in an attenuation of the response particularly following the third stimulation. This may reflect desensitisation or tachyphylaxis of the presynaptic nicotinic receptor. The action of nicotine was markedly stereoselective: a 100-fold higher concentration of (+)-nicotine was necessary to evoke the same level of response as 1 microM (-)-nicotine. It is proposed that these presynaptic nicotinic receptors on striatal terminals are equivalent to high-affinity nicotine binding sites described in mammalian brain.  相似文献   

13.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

14.
Abstract: Electrical stimulation of the medial prefrontal cortex caused glutamate release in the ventral tegmental area (VTA) of freely moving animals. Cathodal stimulation was given through monopolar electrodes in 0.1-ms pulses at an intensity of 300 µA and frequencies of 4–120 Hz. Glutamate was measured in 10-min perfusate samples by HPLC coupled with fluorescence detection following precolumn derivatization with o -phthaldialdehyde/β-mercaptoethanol. The stimulation-induced glutamate release was frequency dependent and was blocked by the infusion of the sodium channel blocker tetrodotoxin (10 µ M ) through the dialysis probe. The stimulation also induced bilateral Fos-like immunoreactivity in ventral tegmental neurons, with a significantly greater number of Fos-positive cells on the stimulated side. These findings add to a growing body of evidence suggesting that the medial prefrontal cortex regulates dopamine release in the nucleus accumbens via its projection to dopamine cell bodies in the VTA.  相似文献   

15.
The effect of tetanus toxin on depolarization-evoked and spontaneous synaptic release of inhibitory and excitatory neurotransmitters was examined in murine spinal cord cell cultures. Toxin action on the release of radiolabeled glycine and glutamate was followed over time intervals corresponding to the early phase of convulsant activity through the later phase of electrical quiescence. Tetanus toxin inhibited potassium-evoked release of [3H]glycine and [3H]glutamate in a time- and dose-dependent manner. Ninety minutes after the application of toxin (6 x 10(-10) M), the stimulated release of [3H]glycine was blocked completely, whereas stimulated release of [3H]glutamate was not blocked completely until 150-210 min after toxin application. Fragment C, the binding portion of the tetanus toxin molecule, had no effect on stimulated release of either transmitter. The spontaneous synaptic release of [3H]glycine was blocked totally within 90 min of toxin exposure. In contrast, the spontaneous release of [3H]glutamate, in toxin-exposed cultures, was elevated to nearly twice that of control cultures at this time. Thus, toxin-induced convulsant activity is characterized by a reduction in the spontaneous synaptic release of inhibitory neurotransmitter with a concomitant increase in the release of excitatory neurotransmitter, as well as the more rapid onset of blockade of depolarization-evoked release of inhibitory versus excitatory neurotransmitter.  相似文献   

16.
Biphasic electrical field stimulation (0.5-5 Hz, 2 ms, 25 V, 3 min) and high K+ (10-30 mM, 5 min) released endogenous 3,4-dihydroxyphenylalanine (DOPA) from superfused rat striatal slices. Characteristics of the DOPA release were compared with those of 3,4-dihydroxyphenylethylamine (dopamine, DA). Electrical stimulation at 2 Hz evoked DOPA and DA over similar time courses. alpha-Methyl-p-tyrosine (0.2 mM) markedly reduced release of DOPA but not of DA. Maximal release (0.3 pmol) of DOPA was obtained at 2 Hz and at 15 mM K+. The impulse-evoked release of DOPA and DA was completely tetrodotoxin (0.3 microM) sensitive and Ca2+ dependent and the 15 mM K+-evoked release was also Ca2+ dependent. On L-[3,5-3H]tyrosine (1 microM) superfusion, high K+ (15 and 60 mM) released DOPA and DA together with concentration-dependent decreases in tyrosine 3-monooxygenase (EC 1.14.16.2) activity as indicated by [3H]H2O formation, followed by concentration-dependent increases after DOPA and DA release ended. These findings suggest that striatal DOPA is released by a Ca2+-dependent excitation-secretion coupling process similar to that involved in transmitter release.  相似文献   

17.
The actions of excitatory amino acids on the release of previously incorporated gamma-[3H]aminobutyric acid ([3H]GABA) were examined in purified (greater than 93%) striatal neurons derived from the fetal mouse brain and differentiated in primary culture. Glutamate, KCl, and veratrine evoked a dose-dependent, saturable, and reversible release of [3H]GABA from striatal neurons. Glutamate actions were not reduced in the absence of calcium, and were insensitive to tetrodotoxin. The dose-response relationships of excitatory amino acids demonstrated the following rank order of potency: glutamate greater than aspartate = N-methyl-D-aspartate greater than kainate much greater than quisqualate. Kainate, however, was the most effective agonist, evoking an eightfold increase over baseline levels of [3H]GABA release. Aspartate- and N-methyl-D-aspartate-evoked release was abolished in the presence of either 2-aminophosphonovaleric acid or gamma-D-glutamylglycine. Release due to glutamate and kainate was partially or ineffectively attenuated by these agents. Glutamate-, aspartate-, and N-methyl-D-aspartate-evoked GABA releases were augmented when calcium was omitted from the bathing medium and reduced when sodium was replaced with choline or lithium. Kainate-evoked release was unaffected when calcium was omitted, virtually unchanged when choline replaced sodium, and markedly potentiated when lithium was substituted for sodium. These findings suggest that at least two distinct receptor systems for excitatory amino acids mediate the evoked release of [3H]GABA from striatal neurons in primary culture. These two systems, aspartate/N-methyl-D-aspartate- and kainate-preferring, are distinguishable on the basis of their pharmacological and ionic properties.  相似文献   

18.
The release of preaccumulated gamma-amino[3H]butyric acid ([3H]GABA) from putative GABAergic amacrine cells was studied in neuronal monolayer cultures made from embryonic chick retina. Release was specifically stimulated by excitatory amino acid agonists. N-Methyl-D-aspartate (NMDA; EC50, 19.1 +/- 5.0 microM), kainic acid (EC50, 15.6 +/- 2.3 microM), and the presumptive endogenous ligand glutamate (EC50, 3.6 +/- 0.5 microM) showed the same efficacy. Quisqualic acid, although the most potent agonist (EC50, 0.56 +/- 0.12 microM), was only half as efficacious. The time course of [3H]GABA release and autoradiographic visualization of responsive GABA-accumulating cells suggest that approximately 50% of the [3H]GABA-accumulating cells possess no or very low responsiveness to quisqualic acid. Depolarization (56 mM KCl)-induced release was fivefold lower than the maximal effect elicited by excitatory amino acids. Release of [3H]GABA and of endogenous GABA was entirely independent of extracellular Ca2+ but was completely abolished after replacement of Na+ by choline or Li+. The effects of NMDA and low concentrations of glutamate (up to 10 microM) were blocked by 2-amino-5-phosphonovaleric acid, by MK 801, and (in a voltage-dependent manner) by Mg2+. The reduction of NMDA responses by kynurenic acid was reversed by D-serine, and quisqualic acid competitively inhibited kainic acid-evoked release. Our results show that the cultured [3H]GABA-accumulating neurons, which probably represent the in vitro counterparts of GABAergic amacrine cells, express at least two types of excitatory amino acid receptors (of the NMDA and non-NMDA type), both of which can mediate a Ca2(+)-independent but Na2(+)-dependent release of GABA.  相似文献   

19.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

20.
Glutamate release induced by mild depolarization was studied in astroglial preparations from the adult rat cerebral cortex, that is acutely isolated glial sub-cellular particles (gliosomes), cultured adult or neonatal astrocytes, and neuron-conditioned astrocytes. K+ (15, 35 mmol/L), 4-aminopyridine (0.1, 1 mmol/L) or veratrine (1, 10 micromol/L) increased endogenous glutamate or [3H]D-aspartate release from gliosomes. Neurotransmitter release was partly dependent on external Ca2+, suggesting the involvement of exocytotic-like processes, and partly because of the reversal of glutamate transporters. K+ increased gliosomal membrane potential, cytosolic Ca2+ concentration [Ca2+]i, and vesicle fusion rate. Ca2+ entry into gliosomes and glutamate release were independent from voltage-sensitive Ca2+ channel opening; they were instead abolished by 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiurea (KB-R7943), suggesting a role for the Na+/Ca2+ exchanger working in reverse mode. K+ (15, 35 mmol/L) elicited increase of [Ca2+]i and Ca2+-dependent endogenous glutamate release in adult, not in neonatal, astrocytes in culture. Glutamate release was even more marked in in vitro neuron-conditioned adult astrocytes. As seen for gliosomes, K+-induced Ca2+ influx and glutamate release were abolished by KB-R7943 also in cultured adult astrocytes. To conclude, depolarization triggers in vitro glutamate exocytosis from in situ matured adult astrocytes; an aptitude grounding on Ca2+ influx driven by the Na+/Ca2+ exchanger working in the reverse mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号