首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
-Mannosidase (EC 3.2.1.24) is a vacuolar enzyme which occurs abundantly in the cotyledons of the jack-bean (Canavalia ensiformis (L.) DC). The mature enzyme is a tetramer with two polypeptides each of relative molecular mass (Mr) 66000 and Mr 44000. The enzyme has an interesting molecular structure because in its native form, it does not bind to concanavalin A (ConA) in spite of the presence of a high-mannose glycan. -Mannosidase is synthesized in the developing cotyledons of jack-beans at the same time as the abundant proteins canavalin and ConA. The enzyme is synthesized as a precursor which has an Mr of 110000 and is associated with the endoplasmic reticulum (ER). Antibodies against the deglycosylated subunits cross-react with the Mr-110000 precursor. Processing of the precursor to the constituent polypeptides occurs posttranslationally, probably in the protein bodies. Immunocytochemical evidence shows that -mannosidase is present in the ER and the Golgi complex of developing cells, and accumulates in the protein bodies.Labeling with [3H]glucosamine shows that after processing only the Mr-66000 polypeptide has glucosamine-containing glycans. The synthesis of these glycans is inhibited by tunicamycin, indicating that they are asparagine-linked oligosaccharides. Analysis of the glycans shows that there is a large glycan that is retained by ConA and a small glycan that is not retained by ConA. The large glycan is only partially sensitive to -mannosidase because of the presence of a terminal glucose residue. Cross-reaction of the large subunit with an antiserum directed against small, complex glycans of plant glycoproteins indicates that this polypeptide probably has a xylose-containing glycan. Pulse-chase experiments carried out in the presence of tunicamycin show that the presence of glycans is not required for transport of -mannosidase out of the ER-Golgi system.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - H L heavy, light subunit - IgG Immunoglobulin G - Mr relative molecular mass - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

2.
The iron, quinone and carotenoid contents of five P700-chlorophyll a-protein complexes having different subunit structures (CP1-a,-b,-c,-d and-e) from the thermophilic cyanobacterium Synechococcus sp. were determined. CP1-a,-b,-c and-d that commonly have four polypeptides of 62,000, 60,000, 14,000 and 10,000 dalton contained 10–14 iron atoms per P700, whereas CP1-e that lacks the two small polypeptides was totally devoid of iron. All CP1 complexes contained vitamin K1 at the molar ratio of vitamin K1 to P700 of about 2 except CP1-e that had only 0.4 vitamin K1 per P700. No plastoquinone was detected in five CP1 complexes. Out of four major carotenoids, -carotene, zeaxanthin, caloxanthin, and myxoxanthophyll, present in the thylakoid membranes, only -carotene was found in isolated CP1 complexes; all CP1 complexes contained about 10 -carotene molecules per P700. The flourescence excitation spectrum showed that -carotene serves as an efficient antenna of photosystem I. It is concluded that all iron atoms and a larger fraction of vitamin K1 molecules present in the photosystem I reaction center complex are associated with the 14,000 and 10,000 dalton polypeptides, whereas -carotene exclusively binds to the large polypeptides which carry the functional and antenna chlorophyll a. The possible functions of iron and vitamin K1 as electron carriers and of -carotene as the accessary pigment and a photoprotectant in the photosystem I complexes are discussed.  相似文献   

3.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

4.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

5.
The crystal-forming proteins (-endotoxins) produced by various serotypes of Bacillus thuringiensis and toxic for Lepidoptera reveal the same pattern of molecular organisation. These proteins (M r of ca. 145,000–130,000) contain an N-terminal domain (M r of 85,000–65,000) resistant to proteolysis whereas their C-terminal moieties (M r of 65,000) undergo an extensive degradation by trypsin that leads to stepwise cleavage off the fragments with M r of 15,000–35,000.The N-terminal domain from serotype V -endotoxin is active when introduced into the hemocoel of Galleria mellonella larvae. Hence, it correponds to the true toxin normally formed by larva proteases action on the crystalforming protein (protoxin). Some differences were found in the properties of the N-terminal domains isolated from the crystal-forming proteins of III, V and IX serotypes, e.g., in their solubility, digestion by subtilisin, molecular weights and the distribution of methionine residues along the polypeptide chains.Abbreviations SDS sodium dodecyl sulphate - PAGE polyacryl amide gel electrophoresis - CFP crystal-forming protein - DNS 5-dimethylamino-1-naphthalene-sulphonyl  相似文献   

6.
Clostridium thermocellum, strain JW20 (ATCC 31449) when growing in cellulose produces a cellulolytic enzyme system, that at the early stage of the fermentation is largely bound to the substrate. As cellulose is consumed the bound enzyme is released as free enzyme to the culture fluid. The bound enzyme fraction extracted with distilled water from the cellulose contains two major components, a large complex (Mr100×106) and a small complex Mr4.5×106) which were separated by gel filtration and sucrose solved by affinity chromatography into a complex that binds to the column and into a non-bindable mixture of proteins. All four fractions have endo--glucanase activity but only the two bound complexes and the free bindable complex hydrolyze crystalline cellulose with cellobiose as the main product. These three complexes are qualitatively similar in that they each contain about 20 different polypeptides (Mr values from 45,000 to 200,000) of which about ten are major components. However, the relative amounts of some of the peptides in the complexes differ. At least four polypeptides of the complexes have endo--glucanase activity.Abbreviations CM cellulose, carboxymethyl cellulose - CMCase carboxymethyl cellulase cosidered endo--1,4-glucanase - SDS sodium dodecyl sulfate - YAS yellow affinity substance - YAS-cellulose yellow affinity substance-cellulose complex  相似文献   

7.
When the capacity of leaves for orderly dissipation of excitation energy in photosynthesis is exceeded, one mechanism by which the excess energy appears to be dissipated is through a nonradiative decay process. This process is observed as a reversible quenching of chlorophyll fluorescence emission (77K) from both photosystem II and photosystem I which persists in darkness (Demmig and Björkman 1987, Planta 171, 171–184). Fluorescence quenching was induced in soybean (Glycine max (L.) Merr.) leaves by two methods: 1) changing the composition of the gas surrounding the leaf from normal air to 2% O2, 0% CO2 at a low, constant photon flux density (PFD=photon fluence rate), and 2) increasing the PFD in the presence of normal air. In either case the quenching was fully reversible after return to the original condition (low PFD, normal air). The half-time of the relaxation of the quenching was in the order of 30 min. Both treatments resulted in reversible dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II (LHC-II). Treatment under photoinhibitory conditions (high PFD plus chloramphenicol) also caused dephosphorylation of LHC-II. Therefore, phosphorylation of LHC-II cannot account for the observed fluorescence quenching. In addition, our results indicate that in vivo a factor other than the redox state of the plastoquinone pool controls LHC-II phosphorylation. This factor may be pH, the pH gradient across the thylakoid membranes.Abbreviations and symbols CAP chloramphenicol - Fo, FM, Fv instantaneous, maximumr variable fluorescence emission - LHC-II light-haryesting chlorophyll-protein complex of PSII - kDa kilodalton - pH pH gradient across the thylakoid membrane - PFD photon flux density (photon fluence rate) - PQ plastoquinone - PSI, PSII photosystem I, II - Q acceptor of PSII C.I.W.-D.P.B. Publication No. 926  相似文献   

8.
Golding AJ  Johnson GN 《Planta》2003,218(1):107-114
The effects of short-term drought on the regulation of electron transport through photosystems I and II (PSI and PSII) have been studied in Hordeum vulgare L. cv. Chariot. Fluorescence measurements demonstrated that electron flow through PSII decreased in response to both drought and CO2 limitation. This was due to regulation, as opposed to photoinhibition. We demonstrate that this regulation occurs between the two photosystems—in contrast to PSII, PSI became more oxidised and the rate constant for P700 re-reduction decreased under these conditions. Thus, when carbon fixation is inhibited, electron transport is down-regulated to match the reduced requirement for electrons and minimise reactive oxygen production. At the same time non-photochemical quenching (NPQ) increases, alleviating the excitation pressure placed on PSII. We observe an increase in the proportion of PSI centres that are active (i.e. can be oxidised with a saturating flash and then rapidly re-reduced) under the conditions when NPQ is increased. We suggest that these additional centres are primarily involved in cyclic electron transport, which generates the pH to support NPQ and protect PSII.Abbreviations A assimilation rate - Ci internal CO2 concentration - ETC electron transport chain - g stomatal conductance - FR far red - k pseudo first-order rate constant for the reduction of oxidised P700 - NPQ non-photochemical quenching - P700 primary electron donor of photosystem I - PSI, PSII photosystem I, II - qP proportion of open PSII centres - ROS reactive oxygen species - pH pH gradient across the thylakoid membrane - PSII quantum yield of photosystem II An erratum to this article can be found at  相似文献   

9.
The excitation energy transfer from -carotene to chlorophyll-a in several seminatural systems such as liposomes, lipid layers and PSI complex has been studied at room and liquid nitrogen temperature. Only in a case of PSI complex an efficient energy transfer (about 30%) from -carotene to chlorophyll-a has been observed. The results of energy transfer were discussed on the ground of Dexter's mechanism by taking into account the recently discovered energy level (1Ag) of -carotene.Abbreviations chl-a chlorophyll-a - -car -carotene - RDA mean donor-acceptor distance - PSI photosystem I - exe excitation wavelength - e emission wavelength - d optical pathlength  相似文献   

10.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

11.
With the aim of obtaining information on the degree of flexibility maintained in cyanobacteria in context with their phylogenetic position, Anacystis was grown in the presence of thiosulphate, oxidized in a photosystem I (PSI) dependent reaction (KM 7.4 × 10?3 M thiosulfate). Besides DBMIB, only o-phenanthroline and p-hydroxymercuribenzoate blocked thiosulphate-dependent PSI activity to some extent; iodonitrothymol, DCMU and cyanide had no influence. Growth of Anacystis in the presence of thiosulphate induced a reorganization of the photosynthetic apparatus characterized by a shift in the PSII/PSI ratio in favor of PSI, comparable to low light conditions. Capability for oxygenic photosynthesis never completely disappeared; structural elements of PSII were retained in the membrane to a certain degree. The antenna pigment system signalled high light under conditions of thiosulphate oxidation as judged from the ratio of phycocyanin to chlorophyll. Besides a shift in the ratio of PSII to PSI components, the polypeptide pattern of thylakoids from thiosulphate grown cells shows several additional components compared to the controls and, moreover, higher concentrations of some polypeptides present in the controls, particularly a Mr 41000 polypeptide. The process of thiosulphate oxidation appears bound to the thylakoid membrane.  相似文献   

12.
Fucosidosis is an autosomal recessive lysosomal storage disease due to a deficiency of-L-fucosidase activity in tissues and body fluids. Exponentially growing lymphoid cell cultures from four fucosidosis patients had 2.7-fold to 15.6-fold less extracellular-L-fucosidase protein and 28.8-fold to 144.0-fold less intracellular-L-fucosidase protein with negligible catalytic activity, compared to the mean of 19 control cultures. The percentage of total-L-fucosidase protein released extracellularly by cultures from the four patients was 64 to 85%, compared to 35±9% for control cultures. Intracellular and extracellular enzyme forms in fucosidosis and control cell lines were glycoproteins containing polypeptide chains ofM r=52,000. During a 1.5-hr pulse-label with35S-methionine,-L-fucosidase was synthesized by control cells and two fucosidosis cell lines as an intracellular form withM r=58,000. During a subsequent 21-hr chase with unlabeled methionine, mutant enzyme was almost entirely processed to an extracellular form withM r=62,000. In contrast, only 25–30% of control enzyme was processed to an extracellular form (M r=62,000), with the remainder retained intracellularly (M r=60,000). In the other two fucosidosis cell lines,-L-fucosidase was synthesized as an intracellular form withM r=56,000 that was processed to an extracellular form withM r=60,000. In summary, the fucosidosis mutation(s) affected the catalytic activity, quantity, and extracellular release of-L-fucosidase as expressed by lymphoid cells.This work was funded by NIH Grants DK 32161 to R. A. DiCioccio and GM 28428 to J. K. Darby.  相似文献   

13.
Mary E. Rumpho  Fred D. Sack 《Planta》1989,179(2):137-147
The usefulness of 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) for in-situ studies of the chloroplast phosphate translocator was evaluated by fluorescence microscopy and radiolabeling of spinach (Spinacia oleracea L.) (C3 plant) and maize (Zea mays L.) (C4 plant) chloroplasts. In maize mesophyll and bundle-sheath chloroplasts and in spinach chloroplasts that were either intact, broken or swollen, DIDS fluorescence was only associated with the chloroplast envelope. Intact chloroplasts often had fluorescent patches corresponding to concave regions of the chloroplast which we assume to be regions enriched in DIDS-binding sites.Incubation of intact or broken spinach chloroplasts or maize mesophyll chloroplasts with [3H2]DIDS resulted in the labeling of a single polypeptide (relative molecular mass, Mr, 30 kDa) in the envelope fraction, in each case. Label in the stromal fraction was not detected when intact chloroplasts were incubated with [3H2]DIDS. However, when broken chloroplasts were incubated with [3H2]DIDS, several polypeptides of various molecular masses were labeled, but not the 30×31-kDa polypeptide. In thylakoid fractions from both broken and intact chloroplasts, a single 30×31-kDa polypeptide was labeled inconsistently. When a mixture of intact maize mesophyll and bundle-sheath chloroplasts was labeled with [3H2]DIDS, extracts of whole chloroplasts displayed radioactivity only in the 30×31-kDa band.We conclude that DIDS is a valuable probe for the in-situ identification and characterization of the 30-kDa protein — the presumptive phosphate translocator — in C3 and C4 chloroplasts since DIDS (1) does not penetrate the inner membrane of the envelope of intact chloroplasts and, therefore, (2) does not bind internal sites in intact chloroplasts, and (3) only binds the 30-kDa protein in the inner membrane of the envelope.Abbreviations CBB Coomassie brilliant blue - DIC differential interference contrast optics - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - [3H2]DIDS 1,2-ditritio-1,2-(2,2-disulfo-4,4-diisothiocyano)diphenylethane - kDa kilodalton - Mr relative molecular mass - PGA 3-phosphoglycerate - Pitranslocator phosphate translocator - SDS sodium dodecyl sulfate  相似文献   

14.
Summary The gene for a -glucosidase from the extremely thermophilic bacterium Caldocellum saccharolyticum has been isolated from a genomic library and sequenced. An open reading frame identified by computer analysis of the sequence could encode a protein of Mr 54400, which is close to the size of the polypeptide experimentally determined using maxicells. Analysis of the amino-terminal residues of the protein produced in Escherichia coli suggests that it is processed by a methionine aminopeptidase. A sequence within C. saccharolyticum DNA upstream of the -glucosidase gene was found to act as a promoter for expression of the thermophile gene in E. coli. The protein has been overproduced in E. coli and Bacillus subtilis where it retains its enzymatic activity and heat stability. There appears to be a single copy of the gene in Caldocellum DNA.  相似文献   

15.
The major storage protein of jackbean (Canavalia ensiformis) has been purified by a protocol involving ammonium-sulphate precipitation, gel filtration and ion-exchange chromatography. The protein was shown by partial amino-acid-sequence data to be homologous to vicilin, a major storage protein of pea (Pisum sativum), and is thus a member of the family of legume 7S proteins exemplified by pea vicilin. This protein is thus referred to as jack-bean vicilin rather than canavalin or precanavalin as previously used. Other properties of the jack-bean vicilin (e.g. subunit relative molecular mass (Mr) and structure, resistance to proteolysis) show similarity to phaseolin, the major 7S storage protein ofPhaseolus vulgaris. Jack-bean vicilin contained no detectable -mannosidase activity, either as isolated from mature or germinating seeds, or after proteolytic treatment. -Mannosidase was also purified from jack beans, and was shown to have a subunit Mr of approx. 120,000; it was separated completely from jack-bean vicilin by a similar protocol to that used for purifying the latter. The -mannosidase was proteolytically cleaved after seed germination, but did not give polypeptides of the same Mr as jackbean vicilin. It was concluded that -mannosidase and jack-bean vicilin are not related proteins.Abbreviations DE diethylaminoethyl - M relative molecular mass - SDS sodium dodecyl sulphate - PAGE polyacrylamide-gel electrophoresis  相似文献   

16.
The molecular forms of -amylase present in developing, mature, germinating and malted grains of barley (Hordeum vulgare L.), and in vegetative tissues, have been studied using Western-blot analyses and isoelectric focusing of isoenzymes. Five isoforms with different relative molecular masses (Mrs) could be recognised. The major isoform present in the mature grain, called isoform B, had an Mr of about 60 000. This was converted on malting or germination to two lower-Mr forms called C and D. Previous work (R. Lundgard and B. Svensson, 1986, Carlsberg Res. Commun. 51, 487–491) has shown that these result from partial proteolysis of isoform B. Isoenzyme analyses showed complex patterns of bands, with pIs between about 5.0 and 6.0. Two allelic types were present in the eight lines. A number of new bands with a range of pIs appeared during germination and malting.An isoform with the same Mr as D and a minor low-Mr isoform (E) were present in young developing whole caryopses (8–12 d after anthesis), but not in older developing endosperms (14–21 d after anthesis). Isoenzyme analyses also showed different patterns of bands in these two tissues, while hybrid-dot analyses indicated the presence of separate populations of mRNAs. It is suggested that the early endosperm isoforms (D and E) are green -amylases present in the pericarp and-or testa of the young caryopses.Roots but not shoots or leaves also contained an isoform with the same Mr as D, although the pattern of isoenzymes differed from that present in the seed tissues.The fifth isoform, A, was a diffuse high-Mr form present in small amounts in all seed and vegetative tissues, and may correspond to a constitutively expressed form.These multiple molecular forms of -amylase are discussed in relation to the recent report that -amylase is encoded by two structural loci, with a total copy number of two to three per haploid genome (Kreis et al, 1988, Genet. Res. Camb. 51, 13–16).Abbreviations Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

17.
Etiolated seedlings developed at cold-hardening temperatures (5°C) exhibited etioplasts with considerable vesiculation of internal membranes compared to etioplasts developed at 20°C regardless of the osmotic concentration employed during sample preparation. This vesiculation disappeared during exposure to continuous light at 5°C. This transformation of 5°C and 20°C etioplasts to chloroplasts under continuous light at 5° and 20°C respectively proceeded normally with the initial development of non-appressed lamellae and the subsequent appearance of granal stacks. However, chloroplasts developed at 5°C exhibited fewer lamellae per granum than chloroplasts developed at 20°C.Although the polypeptide complements of etioplasts and chloroplasts developed at 5° or 20°C were not significantly different, monomeric light harvesting complex (LHCII3) was assembled into oligomeric light harvesting complex (LHCII1) during chloroplast biogenesis at 20°C (oligomer:monomer =1.8) whereas monomeric LHCII predominated at 5°C (oligomer:monomer =0.3). Low temperature fluorescence emission spectra of isolated thylakoids indicated that both the F685/F735 and F695/F735 were significantly higher after greening at 5°C than at 20°C. In addition, chloroplast biogenesis at 5°C was associated with a low ratio of trans-3-hexadecenoic acid (0.5) in phosphatidylglycerol whereas at 20°C biogenesis was associated with a high ratio (1.6). Comparative kinetics indicated that the maximization of the trans-3-hexadecenoic acid level precedes the assembly of monomeric LHCII into oligomeric LHCII during biogenesis at 20°C. It is suggested that low developmental temperatures modulate the assembly of LHCII by reducing the trans-3-hexadecenoic acid content of phosphatidylglycerol such that monomeric or some intermediate form of LHCII predominates.Abbreviations RH Cold-hardened rye - RNH Non-hardened rye - EF Exoplasmic freeze fracture face - Chl Chlorophyll - LHCII Light harvesting Chl a/b protein complex - LHCII1 Oligomeric form - LHCII2 Dimeric form - LHCII3 Monomeric form - CPl Chl a-protein complex associated with photosystem I - CPa Chl a-protein comples associated with photosystem II - FP Free pigment - PSI Photosystem I - PSII Photosystem II - Trans-16:1 Trans-3-hexadecenoic acid - 16:0 Palmitic acid - 18:3 Linolenic acid - PG Phosphatidylglycerol - PC Phosphatidylcholine - PE Phosphatidylethanolamine - SL Sulfolipid - DGDG Digalactosyldiacylglycerol - MGDG Monogalactosyldiacylglycerol - SDS Sodium dodecyl sulfate - PAGE Polyacrylamide gel electrophoresis - PLB Prolamellar body - A Angstrom - DOC deoxycholate  相似文献   

18.
19.
An active photosystem (PSI) complex was isolated from a phycobilisome-less mutant of the mesophilic cyanobacterium Synechococcus PCC 7002 by a mild procedure. Purification of PS I was achieved using a sucrose density gradient and an isoelectric focussing subsequent to the extraction of PSI from thylakoids with dodecyl--maltoside. Electron microscopy and gel filtration HPLC suggested that the isolated complex represents a trimeric form of PSI. The trimeric form was resistant to pH or detergent exchange. A molecular weight of 690 kDa to 760 kDa has been determined for the complex by gel filtration HPLC in several detergents or mixtures of detergents.The PSI complex contains the polypeptides of the psaA, psaB, psaC, psaD, psaE, psaL gene products and two small polypeptides as determined by SDS-PAGE and N-terminal sequencing; its antenna size is 77±2 Chl a/P700. The full set of Fe-S clusters (FA, FB and FX) was observed by EPR-spectroscopy. A preliminary characterization of crystals obtained from this preparation was carried out using SDS-PAGE, optical and EPR spectroscopy.Abbreviations BA benzamidine - CAS 6-amino-n-caproic acid - C8-G octyl--D-glucopyranoside - C12-M lauryl--D-maltoside - C10-M decyl--D-maltoside - C8-TG octyl--D-thioglucoside - Chl a chlorophyll a - EPR electron paramagnetic resonance - FA, FB, FX iron-sulfur centers - HPLC high perfomance liquid chromatography - kDa kilodalton(s) - LDAO lauryldimethylamine oxide - MES 2-(N-morpholino)ethanesulfonic acid - PSI Photosystem I - PS II Photosystem II - P700 primary electron donor - SB12 sulfobetain 12 - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - Tris tris(hydroxymethyl)-aminomethane  相似文献   

20.
Summary In this study, we have used an 1-adrenergic receptor photoaffinity ligand, 2-[4-(4-azido-3-iodo-benzoyl)-piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline (125I-APD), to label covalently the 1-adrenergic receptor in a smooth muscle cell line. Our results indicate that in the absence of light, (125I)APD binds reversibly to a site in the DDT1 MF-2 cell membranes having pharmacological characteristics of an 1-adrenergic receptor. Following incorporation of (125I)ADP into partially purified membranes a single labeled band of protein with a Mr of 81 000 was visualized by autoradiography following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incorporation of (125I)-APD into this band was affected by adrenergic agonists and antagonists in a manner consistent with an 1-adrenergic interaction. Prazosin (1-selective) blocked incorporation of the label into the Mr = 81 000 protein while yohimbine (2-selective) did not. Of the adrenergic agonists, (–)-epinephrine and (–)-norepinephrine but not (–)-isoproterenol blocked labeling of the Mr – 81 000 protein. We conclude that the ligand binding site of the DDT1 MF-2 cell 1-adrenergic receptor resides in a Mr = 81 000 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号