首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

2.
赵磊  刘淑艳 《菌物学报》2019,38(9):1457-1469
白粉菌是一类植物专性寄生真菌,广泛分布于世界各地,可引起多种植物白粉病。开展白粉菌交配型基因研究可以为全面认识白粉菌的生活史循环和系统演化提供证据。本研究以子囊菌中已报道的10种MAT基因和4种侧翼基因的氨基酸序列为种子序列,采用生物信息学方法在21个白粉菌基因组中进行氨基酸同源性分析,探索MAT基因及其侧翼基因的种类和线性排布。结果表明,21个白粉菌基因组中有10个属于MAT1-1型,包含MAT1-1-1MAT1-1-3两种基因;10个属于MAT1-2型,仅包含MAT1-2-1基因;在Erysiphe pulchra的基因组中同时存在MAT1-1-1MAT1-1-3MAT1-2-1;而4种侧翼基因SLA2APC5APN2CoxVia在21个白粉菌基因组中均存在。21个菌株中有两个菌株Blumeria graminis f. sp. hordei RACE1和Golovinomyces orontiiMAT基因和4种侧翼基因分布在同一个scaffold,其余菌株MAT基因和侧翼基因均不在同一scaffold出现。本研究分别分析了具有MAT1-1MAT1-2的菌株中MAT基因和4种侧翼基因的排列关系,同时根据9个菌株的MAT基因注释信息,推测了其他菌株的MAT基因结构。结果表明,同属白粉菌的MAT基因结构相同,属间MAT基因结构差异明显。以从白粉菌基因组中获得的MAT1-1-1MAT1-1-3MAT1-2-1 3种MAT基因序列分别构建系统发育树,发现布氏白粉菌属Blumeria、白粉菌属Erysiphe和戈洛文白粉菌属Golovinomyces分别形成独立分枝,且白粉菌属与戈洛文白粉菌属形成姊妹群,这与前人对白粉菌系统发育关系的研究结果一致。本研究得到的白粉菌MAT基因种类、分布及其结构的相关结果为进一步实验提供了理论依据,为探究白粉菌的系统发育提供了新的思路。  相似文献   

3.
生长素是最重要的植物激素之一, 对植物生长发育起着关键调控作用。生长素作用于植物后, 早期生长素响应基因家族Aux/IAAGH3SAUR等被迅速诱导, 基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成, 结构域I具有抑制生长素信号下游基因表达的作用, 结构域II在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性, 结构域III/IV通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用; 在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中, 主要影响根系发育和株型, 但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展, 以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

4.
5.
The occurrence and distribution of seedling resistance genes and the presence of adult plant resistance to powdery mildew, was investigated in a collection of 155 Nordic bread wheat landraces and cultivars by inoculation with 11 powdery mildew isolates. Eighty-nine accessions were susceptible in the seedling stage, while 66 accessions showed some resistance. Comparisons of response patterns allowed postulation of combinations of genes Pm1a, Pm2, Pm4b, Pm5, Pm6, Pm8 and Pm9 in 21 lines. Seedling resistance was three times more frequent in spring wheat than in winter wheat. The most commonly postulated genes were Pm1a+Pm2+Pm9 in Sweden, Pm5 in Denmark and Norway, and Pm4b in Finland. Forty-five accessions were postulated to carry only unidentified genes or a combination of identified and unidentified genes that could not be resolved by the 11 isolates. Complete resistance to all 11 isolates was present in 18 cultivars. Adult plant resistance was assessed for 109 accessions after natural infection with a mixture of races. In all, 92% of the accessions developed less than 3-5% pathogen coverage while nine lines showed 10-15% infected leaf surface. The characterization of powdery mildew resistance in Nordic wheat germplasm could facilitate the combination of resistance genes in plant breeding programmes to promote durability of resistance and disease management.  相似文献   

6.
7.
开花是植物生长发育的重要过程。CCT家族基因在植物中广泛存在, 参与植物花期的调控过程。该文从粗山羊草(Aegilops tauschii)全基因组中分离出26个CCT基因, 它们分布于7对染色体上, 按照排列顺序将其命名为AetCCT1-26。AetCCT蛋白分子量介于14.9 kDa (AetCCT3)-83.2 kDa (AetCCT12)之间, 其中有25个蛋白包含完整的CCT保守结构域。系统发育分析显示, 12对粗山羊草/乌拉尔图小麦(Triticum urartu) CCT蛋白和9对粗山羊草/水稻(Oryza sativa) CCT蛋白为直系同源蛋白。通过公共数据的数字表达分析表明, AetCCT具有组织特异性和组成型2种表达形式, 其中AetCCT3AetCCT4AetCCT7AetCCT9等9个基因在大部分组织中都有表达, 而AetCCT15AetCCT21AetCCT25等基因分别在种子、叶和根等少数组织中特异表达。AetCCT家族可以响应不同外源激素, 施用激素24小时和72小时后各成员对激素响应整体表现一致, 但不同成员对于不同激素的响应存在差异, 表明该家族成员在功能和行使方式等方面具有一定的多样性, 可能参与不同生长发育过程。光照条件影响AetCCT的表达, 说明光照和春化作用是影响与调控该家族基因表达的重要因素。研究结果有助于探索小麦(T. aestivum)进化、驯化和演变的规律, 以及认识重要农艺性状的形成与互作网络。  相似文献   

8.
9.
10.
11.
为研究抗白粉病小麦(Triticum aestivum L.)品系在小麦白粉病菌(Blumeria graminis f. sp.tritici)侵染后有无LRK10同源基因表达,依据小麦蛋白激酶LRK10和其它植物蛋白激酶第6亚结构域设计了一个5’-RACE兼并性引物。以接种小麦白粉病菌后的小麦抗白粉病品系“99—2439”幼苗叶片cDNA为模板进行5’-RACE扩增,获得了一个1551bp长的蛋白激酶基因cDNA片段(S1125,GenBank登录号:AY584533)。此后,通过RACE技术成功地获得了该基因的全长cDNA克隆。该克隆编码637个氨基酸组成的多肽。同源性查寻表明,该基因属于先前命名为wfrk(wheat leaf rust kinase)的小麦类受体蛋白激酶基因家族。与LRK10相似,这个新的小麦类受体蛋白激酶有5个明显的功能域:位于氨基端的疏水信号序列、推测的胞外结构域、跨膜域、高荷电序列和位于羧基端的丝氨酸/苏氨酸激酶域,因此被命名为TaLRK(Triticum aestivum LRK)。以小麦肌动蛋白基因为对照,通过半定量反转录PCR(semi—QRT—PCR)技术对叶片中TaLRK基因在小麦白粉病菌接种后的转录水平表达谱进行了研究。结果表明,小麦白粉病菌的侵染使TaLRK基因的转录显著增强。组织特异性表达分析证明,这一基因仅在小麦的绿色部分表达。研究结果提示TaLRK可能参与了小麦的抗白粉病反应。  相似文献   

12.
Study on the regulation of broad‐spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad‐spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1‐mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1‐mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7‐6 mutant. A point mutation in b7‐6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss‐of‐function or RNA‐silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1‐dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over‐expression of AtANN8 compromised RPW8.1‐mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1‐triggered H2O2. In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1‐mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.  相似文献   

13.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

14.
This paper reports the characterization of the powdery mildew resistance homologous genes family of Triticum aestivum. Using degenerate primer pair for wheat resistance genes, we have cloned seven 3′ truncated powdery mildew resistance gene homologous fragments Tpc5a, Tp25a, Tp25b, Tp3a5a, Tp3a5b, Tp4b5a and Tp4b5b. These fragments were sequenced. The deduced amino acid sequences showed that six of them have premature stop codons. All these sequences had a very high level of similarity to known Pm resistance genes such as Pm3a, Pm3b, Pm3d and pm3f in hexaploid wheat. By ignoring the stop codons in the sequences, their deduced protein sequences were of coiled-coil (CC)-nucleotide binding site (NBS)-leucine repeat rich (LRR) structure. These results suggest that there are many powdery mildew resistance gene analogues in both resistant and susceptible wheat. Among them, small insertion/deletion events and point mutations can result in the diversity of wheat Pm resistance homologous genes.  相似文献   

15.
Disease resistance (R) gene, RPP13, plays an important role in the resistance of plants to pathogen infections; its function in resistance of wheat to powdery mildew remains unknown. In this study, a RNA-Seq technique was used to monitor expression of genes in susceptible wheat ‘Jing411’ and resistant near-isogenic line ‘BJ-1’ in response to powdery mildew infection. Overall, 413 differential expression genes were observed and identified as involved in disease resistance. RPP13 homologous gene on wheat chromosome 7D was preliminarily identified using the wheat 660K SNP chip. RPP13 was highly expressed in ‘BJ-1’ and encodes 1,027 amino acids, including CC, NB and LRR domain, termed TaRPP13-3. After inoculation with powdery mildew, expression of TaRPP13-3 in resistant wheat changed with time, but average expression was higher when compared to susceptible variety, thus indicating that TaRPP13-3 is involved in resistance to powdery mildew. Virus-induced gene silencing (VIGS) was used to inhibit expression of TaRPP13-3 in resistant parent ‘Brock’. Results indicated that silencing of TaRPP13-3 led to decreased disease resistance in ‘Brock’. Overall results of this study indicate that TaRPP13-3 gene is involved in the defence response of wheat to powdery mildew and plays a positive role in wheat powdery mildew interactions.  相似文献   

16.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

17.
栽培一粒小麦是普通小麦的近缘种,遗传多样性丰富,蕴含丰富的抗病基因,是小麦抗病性改良的重要资源。本文对栽培一粒小麦抗白粉病材料3AA30的抗白粉病基因进行了遗传分析和分子标记定位。结果表明,3AA30中含有一个隐性抗白粉病基因,暂命名为ml3AA30,找到了5个与该基因连锁的SSR分子标记Xgwm6、Xcfd39、Xcfa2185、Xcfa2141、Xcfa2155及2个STS标记Xmag2170、Xmag1491,并构建了ml3AA30的遗传连锁图,将该基因定位在小麦5A染色体长臂上。本研究为小麦抗病育种提供了新的抗源材料。  相似文献   

18.
Two major genes for Na(+) exclusion in durum wheat, Nax1 and Nax2, that were previously identified as the Na(+) transporters TmHKT1;4-A2 and TmHKT1;5-A, were transferred into bread wheat in order to increase its capacity to restrict the accumulation of Na(+) in leaves. The genes were crossed from tetraploid durum wheat (Triticum turgidum ssp. durum) into hexaploid bread wheat (Triticum aestivum) by interspecific crossing and marker-assisted selection for hexaploid plants containing one or both genes. Nax1 decreased the leaf blade Na(+) concentration by 50%, Nax2 decreased it by 30%, and both genes together decreased it by 60%. The signature phenotype of Nax1, the retention of Na(+) in leaf sheaths resulting in a high Na(+) sheath:blade ratio, was found in the Nax1 lines. This conferred an extra advantage under a combination of waterlogged and saline conditions. The effect of Nax2 on lowering the Na(+) concentration in bread wheat was surprising as this gene is very similar to the TaHKT1;5-D Na(+) transporter already present in bread wheat, putatively at the Kna1 locus. The results indicate that both Nax genes have the potential to improve the salt tolerance of bread wheat.  相似文献   

19.
白粉病是橡胶树生长发育过程中主要叶部病害之一。热激蛋白90(HSP90)分子伴侣在植物逆境胁迫抗性中起着重要作用。为研究HSP90家族成员结构及其在橡胶树抗白粉病中的功能,利用PCR技术从橡胶树品种热研73397叶片中克隆HbHSP90.8-1并采用生物信息学等技术对其结构和功能进行分析。结果表明,HbHSP90.8-1 cDNA序列全长2 844 bp,开放阅读框(ORF)2 454 bp,编码817个氨基酸。HbHSP90.8-1编码一个有信号肽、无跨膜结构且定位预测在内质网上的稳定亲水蛋白,存在HSP90 superfamily和HATPase superfamily结构域。系统进化分析结果表明橡胶树HbHSP90.8-1与木薯MeHSP90的亲缘关系最近,与麻风树JcHSP90聚为一类。通过qRT-PCR分析结果表明HbHSP90.8-1在橡胶树不同组织中均有表达,其在胶乳中的表达量最高;HbHSP90.8-1基因在白粉菌侵染、H2O2、ABA和ETH处理叶片中,表达量均呈现显著上调趋势;在MeJA和SA激素处理下,HbHSP90.8-1表达量呈现下调的趋势。说明HbHSP90.8-1参与橡胶树对白粉菌响应过程以及植物抗病相关激素信号转导途径。  相似文献   

20.
小麦类甜蛋白基因(TaTLP1)的克隆、定位和蛋白表达   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号