首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature and organic loading rate on the rate of methane production from acidic petrochemical wastewater without neutralization was investigated by continuously feeding an anaerobic upflow fixed-film reactor. The temperatures selected for the studies were 25, 37, 45 and 55 degrees C. Organic loading rate (OLR) for each temperature was varied from 3.6 to 21.7 kg COD m(-3) d(-1). Best performance with respect to COD and BOD reduction, total gas production and methane yield was obtained with the reactor operating at 37 degrees C. OLR could be increased to a maximum of 21.7 kg COD m(-3) d(-1) with 90-95% COD and BOD reduction and methane yield of 0.450 m3 kg(-1) COD d(-1) added. The reactor operating at 55 degrees C gave the highest methane yield of 0.666 m3 kg(-1) COD d(-1) at an OLR of 6 kg COD m(-3) d(-1). This decreased to 0.110 m3 kg(-1) COD d(-1) when the OLR was increased to 18.1 kg COD m(-3) d(-1). The reactor operating at 45 degrees C gave a maximum methane yield of 0.416 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1). On further increasing the OLR to 9 kg COD m(-3) d(-1), COD reduction was 89%, however, methane yield decreased to 0.333 m3 kg(-1) COD d(-1) added. The highest methane yield of 0.333 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1) was obtained with reactors operating at 25 degrees C. These studies indicate potential rates of methane production from acidic petrochemical wastewater under different temperatures. This provides a guideline for various kinetic analyses and economic evaluation of the potential feasibility of fermenting acidic wastewater to methane.  相似文献   

2.
This investigation proved that respirometry combined with sequencing batch reactor (SBR) could be an effective way for the removal of COD in tannery wastewater. Measurement of oxygen uptake rates (OUR) and corresponding COD uptake rates showed that a 12-h operating cycle was optimum for tannery wastewater. The removal of COD by degradation was stoichiometric with oxygen usage. A plot of OUR values provided a good indication of the biological activity in the reactor. A high OUR value corresponded to the feed period; at the end of the cycle, when the substrate was depleted, the OUR value was low. At a 12-h SBR cycle with a loading rate of 1.9-2.1 kgm(-3) d(-1), removal of 80-82% COD, 78-80% TKN and 83-99% NH(3)-N were achieved. These removal efficiencies were much higher than the conventional aerobic systems. A simple method of COD fractionation was performed from the OUR and COD uptake rate data of the SBR cycle. About 66-70% of the influent COD was found to be readily biodegradable, 10-14% was slowly degradable and 17-21% was non-biodegradable. The oxygen mass transfer coefficient, K(L)a (19 +/- 1.7 h(-1)) was derived from respirometry. It was observed that with the exception of high organic load at the initial feed the oxygen transfer capacity was in excess of the OUR, and aerobic condition was generally maintained. Simultaneous nitrification-denitrification was observed in the SBR during the feed period as proved by mass balance.  相似文献   

3.
The surface flow constructed wetland (SFCW) with Cyperus involucratus, Typha augustifolia and Thalia dealbata J. Fraser was applied to treat anaerobic treated-molasses wastewater (An-MWW) under the organic loading rates (OLRs) of 612, 696, 806, 929 and 1,213 kg BOD(5)ha(-1)day(-1). The results showed that both removal efficiency and plant growth rate were increased with the decrease of organic loading rate (OLR). All tested-plant species could not grow under OLR of higher than 696 kg BOD(5)mg l(-1) (p>0.05). Also, the plant-biomass of the systems was reduced by 10.4%, 26.5%, and 64.7% of initial plant-biomass under the OLR of 806, 929 and 1,213 kg BOD(5)ha(-1)day(-1), respectively. However, all tested-plant species showed the same pattern on the plant-biomass production yield and removal efficiency. The highest SS, BOD, COD, total phosphorus, NH(4)(+), NO(3)(-) and molasses pigments (MP) removal efficiencies of 90-93%, 88-89%, 67%, 70-76%, 77-82%, 94-95% and 72-77%, respectively were detected under the OLR of 612 kg BOD(5)ha(-1)day.  相似文献   

4.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

5.
The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg l(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation.  相似文献   

6.
Anaerobic digestion of wastewater from a dimethyl terephthalate plant was studied in continuously stirred tank reactors with plastic net biomass support particles (BSP) at a level of 20% (v/v). The experimental results showed that the BSP system could treat the wastewater at a hydraulic retention time as low as 1.5 d, organic loading as high as 20 kg COD/m3/d and at acidic feed pH as low as 4.5 with 95% COD reduction and biogas production of about 8l/l/d, while the control system without support particles could not treat the wastewater above a 5-d hydraulic retention time, 5 kg COD/m3/d organic loading and a feed pH of 6.0. Thus, augmentation of BSP upgraded the performance of the conventional suspended growth system to an equivalent level to advanced reactors.  相似文献   

7.
人工湿地对猪场废水有机物处理效果的研究   总被引:69,自引:1,他引:68  
分别以香根草 (Vetiveriazizanioides)和风车草 (Cyperusalternifolius)为植被 ,按 1.0m× 0 .5m×0 .8m建立人工湿地 ,通过 4季测试 ,研究其对猪场废水有机物的净化功能及其随季节、进水浓度及水力停留时间变化的规律 .结果表明 ,4个季节香根草或风车草人工湿地对COD和BOD有较稳定的去除效果 ,两湿地抗有机负荷冲击能力强 .在春季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 70 %和 80 %;在夏季 ,进水COD高达 10 0 0~ 140 0mg·L-1情况下 ,COD去除率接近 90 %;在秋季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 5 0 %~ 6 0 %和 5 0 %;在冬季 ,进水COD达 10 0 3mg·L-1情况下 ,COD去除率在 70 %以上 .COD、BOD和SS的去除率在两湿地间没有显著差异 .人工湿地污染物 (Y)随水力停留时间 (t)延长的降解遵从指数方程规律Yt=Y0 ·e( -kt) .在相同停留时间时 ,随进水污染物浓度 (x)提高的出水污染物浓度 (y)的回归关系遵从直线方程规律 y =a+bx .  相似文献   

8.
Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.  相似文献   

9.
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

10.
The main objective of this study is to assess the achievability of stringent discharge criteria i.e. BOD(5)<15 mg/L, TSS<15 mg/L and NH(4)-N<1mg/L during the treatment of tomato processing wastewater with COD of 2800-15,500 mg/L, BOD(5) of 1750-7950 mg/L, TKN of 48-340 mg/L and NH(4)-N of 21-235 mg/L. Two treatment systems, a UASB-aerobic system and a UASB-anoxic-aerobic system were tested. Furthermore due to alkalinity deficiency, in the raw wastewater, the study explored varying UASB effluent recirculation flowrates to the UASB influent to reduce additional alkalinity requirements. The UASB-anoxic-aerobic system was effective in treating tomato canning wastewater at an overall HRT of 1.75 days while achieving 98.5% BOD(5), 95.6% COD, 84% TSS and 99.5% NH(4)-N removal producing effluent BOD(5), COD, TSS, NH(4)-N, TKN, NO(2)-N, NO(3)-N and PO(4)-P of 10, 70, 15, 0.5, 3, 0, 60 and 4 mg/L, respectively. The biogas yield was 0.43 m(3)/kg COD removed.  相似文献   

11.
Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.  相似文献   

12.
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

13.
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type, substrate material and wetland shape on the performance of free-water surface (FWS) constructed wetlands treating wastewater, 5 pilot-scale units were constructed and operated continuously from December 2004 until March 2007 in parallel experiments. Four of the units (A, B, C, D) were rectangular in plan view with dimensions 3.40 m in length and 0.85 m in width, and contained substrate material at a thickness of 0.45 m. The fifth unit (E) had a trapezoidal plan view shape, with a width at the inlet of 1.15 m and at the outlet of 0.55 m, while the length and the thickness of the substrate were the same as in the other four. All units operated at a water depth of 0.10 m. Units B–E contained clay substrate and unit A contained sand. The four units with clay were planted as follows: two with cattails (B and E), one with common reeds (C), and one with giant reeds (D). Unit A, containing sand, was planted with cattails. Planting and substrate material combinations were appropriate for comparison of the effect of vegetation and material type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period four HRTs (i.e., 6 days, 8 days, 14 days and 20 days) were used, while wastewater temperatures varied from about 0.0 °C to 29.1 °C. The removal performance of the five constructed wetland units was good, since it reached on the average 77.5%, 67.9%, 60.4%, 53.9%, 56.0% and 51.7% for BOD, COD, TKN, ammonia (NH4-N), ortho-phosphate (PO4-P) and total phosphorus (TP), respectively. BOD and phosphorus removal efficiencies showed dependence on temperature in most units. The 14-day HRT was found adequate for acceptable removal of organic matter, nitrogen and phosphorus for most temperatures. A 20-day HRT is recommended for acceptable removal of BOD and PO4-P in the cold season. The unit with the trapezoidal plan view shape showed the best performance, with mean removals of 80.1%, 73.5%, 70.4%, 68.6%, 64.7% and 63.5% for BOD, COD, TKN, NH4-N, PO4-P and TP, respectively. The cattail was found statistically more efficient than the other two plants in COD and PO4-P removal. The unit that contained the clay substrate was found statistically more efficient in phosphorus removal than the unit containing sand. HSF CW units were found more efficient than FWS units in removal of most pollutant.  相似文献   

14.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from extracted sunflower flour was carried out in a laboratory-scale, mesophilic (35 degrees C) fluidized-bed reactor with saponite as bacterial support. Chemical oxygen demand (COD) removal efficiencies in the range of 98.3-80.0% were achieved in the reactor at organic loading rates (OLR) of between 0.6 and 9.3 g COD/I d, hydraulic retention times (HRT) of between 20.0 and 1.1 d and average feed COD concentration of 10.6 g/l. Eighty percent of feed COD could be removed up to OLR of 9.3 g COD/l d. The yield coefficient of methane production was 0.33 l of methane (at STP) per gram of COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favorable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. The experimental data indicated that a total alkalinity in the range of 2,000-2,460 mg/l as CaCO3 was sufficient to prevent the pH from dropping to below 7.0 for OLR of up to 9.3 g COD/l d. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3-0.4) for OLR and HRT up to 9.3 g COD/l d and 1.1 d, respectively. For a HRT of 0.87 d (OLR of 12.1 g COD/l d) the start of acidification was observed in the reactor.  相似文献   

15.
A packed cage rotating biological contactor (RBC) system was applied to treat wastewater containing Cl2 residue with concentration even up to 20 mg/L. However, Cl2 exhibited a negative effect on the efficiency of the system as evidenced by the decrease in the growth of bio-film. It could be concluded that the removal efficiency of the system decreased with the increase of Cl2 concentration or Cl2 loading. Due to inhibition of bio-film growth by the effects of Cl2 residue, the effluent suspended solids (SS) of the system was decreased. The bio-film was easily detached from the media under high growth rate conditions resulting in an increase of effluent SS. The COD and BOD5 removal efficiencies of the system under the highest organic and Cl2 loadings of 4.07 g BOD5/m2 d and 203.6 mg Cl2/m2 d, respectively, were 58.0+/-3.2% and 60.7+/-3.9%, respectively, while they were up to 83.3+/-1.8% and 85.8+/-2.0%, respectively, under the lowest organic and Cl2 loading of 2.04 g BOD5/m2 d and 25.5 mg Cl2/m2 d. However, the effluent SS of the system under above operating conditions was lower than 20 mg/L.  相似文献   

16.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

17.
A laboratory scale rotating biological contactor (RBC) predenitrification system incorporating anoxic and aerobic units was evaluated for the treatment of settled high-strength municipal wastewater. The system was operated under four recycle ratios (1, 2, 3 and 4) and loading rates of 38-182 gCOD/m(2)d and 0.22-14 gOxid-N/m(2)d on the anoxic unit and 3.4-18 gCOD/m(2)d and 0.24-1.8 gNH(4)-N/m(2)d on the aerobic. The average removal efficiency in terms of chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), total suspended solids (TSS) and total nitrogen (Total-N) was 82%, 86%, 63% and 54%; settling of the RBC effluent increased COD and TSS removal to 94% and 97%. An increase in hydraulic loading resulting from higher recirculation, had limited negative effect on organic removal but improved nitrogen removal, and in terms of Total-N removal efficiency increased up to a ratio of 3 and then decreased.  相似文献   

18.
Wastewaters from tannery industry are complex in composition and providing adequate treatment can be difficult. Constructed wetlands (CW) are regarded as an alternative treatment to the conventional biological systems, as a developing cost-effective and environmentally friendly phytoremediation technology. The present review compiles and integrates information on CWs technology for the needs of the tannery sector. The following issues arise as crucial for the implementation of such systems, namely i) an accurate wastewater characterization and an effective pretreatment before reaching the CW, ii) choosing the plants species better adapted to the imposed conditions, iii) substrate selection and iv) range of organic loadings applied. The examples practiced in Portugal give indication that horizontal subsurface flow systems, with expanded clay media, are a suitable option to be considered when dealing with high organic loading tannery wastewater (up to c.a. 3800 kgCODha?1d?1), being resilient to a wide range of hydraulic variations. Plants such as Phragmites and Typha have shown to be adequate for tannery wastewater depuration, with Arundo donax proving resilient to high salinity wastewaters. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main secondary or tertiary treatment stage.  相似文献   

19.
Batch scale activated sludge kinetic studies were undertaken for the treatment of pet food wastewater characterized by oil and grease concentrations of up to 21,500 mg/L, COD and BOD concentrations of 75,000 and 60,000 mg/L, respectively as well as effluent from the batch dissolved air flotation (DAF) system. The conducted kinetics studies showed that Haldane Model fit the substrates and biomass data better than Monod model in DAF-pretreated wastewater, while the modified hydrolysis Monod model better fit the raw wastewater kinetic data. For the DAF pretreated batches, Haldane Model kinetic coefficients k, K(S), Y and Ki values of 1.28-5.35 g COD/g VSS-d, 17,833-23,477 mg/L, 0.13-0.41 mg VSS/mg COD and 48,168 mg/L, respectively were obtained reflecting the slow biodegradation rate. Modified hydrolysis Monod model kinetic constants for the raw wastewater i.e., k, K(S), Y, and K(H) varied from 1-1.3 g COD/g VSS-d, 5580-5600 mg COD/l, 0.08-0.85 mg VSS/mg COD, and 0.21-0.66 d(-1), respectively.  相似文献   

20.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号