首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   

2.
3.
4.
5.
6.
7.
8.
pou5f1, also known as Oct4, is required to establish the pluripotent cell population necessary for embryogenesis in mouse. Additional roles during development, including endoderm formation, have been proposed. In zebrafish, the zygotic pou5f1/pou2 mutant spiel ohne grenzen (spg) shows neural plate patterning defects and reduced endoderm at the tailbud stage. To investigate the function of maternal and early zygotic pou5f1 expression, we rescued zygotic spg(m793) mutants by injecting pou5f1 mRNA at the one-cell stage and raised them into fertile homozygous spg(m793) adults that mate to produce maternal-zygotic spg (MZspg) mutant embryos. Although neurectoderm, mesoderm, and germ cells develop in MZspg mutants, gastrulation is delayed and proceeds abnormally. Further, MZspg mutants do not maintain expression of sox32/casanova, express little or no sox17, and fail to develop endodermal tissue. Constitutively active Nodal receptor TARAM-A or sox32 overexpression induces ubiquitous sox17 expression in wild-type embryos, but not in MZspg mutants. Overexpression of a Pou5f1-VP16 activator fusion protein can rescue gastrulation and endodermal tissues in MZspg mutants. We propose that pou5f1 plays an activating role in zebrafish endodermal development, where it maintains sox32 expression during gastrulation and acts with sox32 to induce sox17 expression in endodermal precursor cells.  相似文献   

9.
The single Fgf8 gene in mice produces eight protein isoforms (Fgf8a-h) with different N-termini by alternative splicing. Gain-of-function studies have demonstrated that Fgf8a and Fgf8b have distinct activities in the developing midbrain and hindbrain (MHB) due to their different binding affinities with FGF receptors. Here we have performed loss-of-function analyses to determine the in vivo requirement for these two Fgf8 spliceforms during MHB development. We showed that deletion of Fgf8b-containing spliceforms (b, d, f and h) leads to loss of multiple key regulatory genes, including Fgf8 itself, in the MHB region. Therefore, specific inactivation of Fgf8b-containing spliceforms, similar to the loss of Fgf8, in MHB progenitors results in deletion of the midbrain, isthmus, and cerebellum. We also created a splice-site mutation abolishing Fgf8a-containing spliceforms (a, c, e, and g). Mice lacking Fgf8a-containing spliceforms exhibit growth retardation and postnatal lethality, and the phenotype is variable in different genetic backgrounds, suggesting that the Fgf8a-containing spliceforms may play a role in modulating the activity of Fgf8. Surprisingly, no discernable defect was detected in the midbrain and cerebellum of Fgf8a-deficient mice. To determine if Fgf17, which is expressed in the MHB region and possesses similar activities to Fgf8a based on gain-of-function studies, may compensate for the loss of Fgf8a, we generated Fgf17 and Fgf8a double mutant mice. Mice lacking both Fgf8a-containing spliceforms and Fgf17 display the same defect in the posterior midbrain and anterior cerebellum as Fgf17 mutant mice. Therefore, Fgf8b-containing spliceforms, but not Fgf8a, are essential for the function of Fgf8 during the development of the midbrain and cerebellum.  相似文献   

10.
11.
During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm.  相似文献   

12.
13.
Developmental abnormalities of craniofacial structures and teeth often occur sporadically and the underlying genetic defects are not well understood, in part due to unknown gene-gene interactions. Pax9 and Msx1 are co-expressed during craniofacial development, and mice that are single homozygous mutant for either gene exhibit cleft palate and an early arrest of tooth formation. Whereas in vitro assays have demonstrated that protein-protein interactions between Pax9 and Msx1 can occur, it is unclear if Pax9 and Msx1 interact genetically in vivo during development. To address this question, we compounded the Pax9 and Msx1 mutations and observed that double homozygous mutants exhibit an incompletely penetrant cleft lip phenotype. Moreover, in double heterozygous mutants, the lower incisors were consistently missing and we find that transgenic BMP4 expression partly rescues this phenotype. Reduced expression of Shh and Bmp2 indicates that a smaller “incisor field” forms in Pax9+/−;Msx1+/− mutants, and dental epithelial growth is substantially reduced after the bud to cap stage transition. This defect is preceded by drastically reduced mesenchymal expression of Fgf3 and Fgf10, two genes that encode known stimulators of epithelial growth during odontogenesis. Consistent with this result, cell proliferation is reduced in both the dental epithelium and mesenchyme of double heterozygous mutants. Furthermore, the developing incisors lack mesenchymal Notch1 expression at the bud stage and exhibit abnormal ameloblast differentiation on both labial and lingual surfaces. Thus, Msx1 and Pax9 interact synergistically throughout lower incisor development and affect multiple signaling pathways that influence incisor size and symmetry. The data also suggest that a combined reduction of PAX9 and MSX1 gene dosage in humans may increase the risk for orofacial clefting and oligodontia.  相似文献   

14.
Here, we report a novel mechanism regulating migration of the anterior visceral endoderm (AVE) by BMP signaling through BMPRIA. In Bmpr1a-deficient (Bmpr-null) embryos, the AVE does not migrate at all. In embryos with an epiblast-specific deletion of Bmpr1a (Bmpr1anull/flox; Sox2Cre embryos), the AVE cells migrate randomly from the distal end of embryos, resulting in an expansion of the AVE. Dkk1, which is normally expressed in the anterior proximal visceral endoderm (PxVE), is downregulated in Bmpr-null embryos, whereas it is circumferentially expressed in Bmpr1anull/flox; Sox2Cre embryos at E5.75-6.5. These results demonstrate an association of the position of Dkk1 expressing cells with direction of the migration of AVE. In Bmpr1anull/flox; Sox2Cre embryos, a drastic decrease of WNT signaling is observed at E6.0. Addition of WNT3A to the culture of Bmpr1anull/flox; Sox2Cre embryos at E5.5 restores expression patterns of Dkk1 and Cer1. These data indicate that BMP signaling in the epiblast induces Wnt3 and Wnt3a expression to maintain WNT signaling in the VE, resulting in downregulation of Dkk1 to establish the anterior expression domain. Thus, our results suggest that BMP signaling regulates the expression patterns of Dkk1 for anterior migration of the AVE.  相似文献   

15.
16.
The formation of the nervous system is initiated when ectodermal cells adopt the neural fate. Studies in Xenopus demonstrate that inhibition of BMP results in the formation of neural tissue. However, the molecular mechanism driving the expression of early neural genes in response to this inhibition is unknown. Moreover, controversy remains regarding the sufficiency of BMP inhibition for neural induction. To address these questions, we performed a detailed analysis of the regulation of the soxB1 gene, sox3, one of the earliest genes expressed in the neuroectoderm. Using ectodermal explant assays, we analyzed the role of BMP, Wnt and FGF signaling in the regulation of sox3 and the closely related soxB1 gene, sox2. Our results demonstrate that both sox3 and sox2 are induced in response to BMP antagonism, but by distinct mechanisms and that the activation of both genes is independent of FGF signaling. However, both require FGF for the maintenance of their expression. Finally, sox3 genomic elements were identified and characterized and an element required for BMP-mediated repression via Vent proteins was identified through the use of transgenesis and computational analysis. Interestingly, none of the elements required for sox3 expression were identified in the sox2 locus. Together our data indicate that two closely related genes have unique mechanisms of gene regulation at the onset of neural development.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号