首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7‐desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally‐induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules.  相似文献   

3.
Aims: The aim of this study was to evaluate the influence of environmental conditions on the antifungal activity of the Bacillus sp. CCMI 1053 cultures. Methods and Results: The electrospray ionization mass spectra (ESI‐MS) analysis was used to detect the active peptides produced by Bacillus amyloliquefaciens CCMI 1051 cultures in a glucose‐containing medium to which four different nitrogen sources were added. The cultures produced different patterns of Bacillus sporulation and distinct antifungal activity of the cell‐free culture broths. Conclusions: The highest sporulation obtained corresponds to higher antifungal activity when it is formed after 3 days of microbial growth. The antifungal activity against Trichoderma harzianum CCMI 783 is more influenced by the concentration on the nitrogen source than the culture time of incubation. The association of nitrogen concentration and the time of incubation is particularly relevant in the expression of the antifungal activity. Significance and Impact of the Study: The present findings allow the reduction of the use of chemical pesticides and to limit some plant diseases. The association of the nitrogen source and the time of incubation is a novelty, which would improve the production of secondary metabolites. Both economical and environmental benefits arise from the study.  相似文献   

4.
Sakuranetin ( 1 ) is a flavanone phytoalexin that has been reported to play an important role in disease resistance in rice plants. The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae) has been reported to metabolize 1 to lower its antifungal activity. Here, two flavanones, sternbin ( 2 ) and naringenin ( 3 ), were identified as metabolites of 1 in Poryzae suspension culture by liquid chromatography tandem mass spectrometry (LC/MS/MS). The inhibition of 1 , 2 , and 3 on Poryzae mycelial growth were 45%, 19%, and 19%, respectively, at a concentration of 100 μm . Thus, 2 and 3 are detoxified metabolites of 1 by Poryzae.  相似文献   

5.
Synthetic extreme environments like carwash effluent tanks and drains are potential sources of biotechnologically important microorganisms and molecules which have, however, remained unexplored. Using culture‐ and molecular‐based methods, a total of 17 bacterial isolates belonging to the genera Shewanella, Proteus, Paenibacillus, Enterobacter and Citrobacter, Aeromonas, Pseudomonas and Pantoea were identified. Hydrocarbon utilization and enzyme production screening assays showed that Aeromonas sp. CAC11, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 and Citrobacter sp. PCW7 were able to degrade benzanthracene, naphthalene and diesel oil, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 could produce cellulase enzyme, while Proteus sp. BPS2, Pseudomonas sp. SAS8 and Proteus sp. CAL3 could produce lipase. GC‐MS analysis of bacterial secondary metabolites resulted in identification of 107 different compounds produced by Proteus sp. BPS2, Paenibacillus sp. CAC12, Pseudomonas sp. SAS8, Proteus sp. CAL3 and Paenibacillus sp. CAC13. Most of the compounds identified by both GC‐MS and LC‐MS have previously been determined to have antibacterial, antifungal and/or anticancer properties. Further, microbial metabolites which have previously been known to be produced only by plants or microorganisms found in natural extreme environments were also identified in this study. This research has revealed the immense bioresource potential of microorganisms inhabiting synthetic extreme environments.  相似文献   

6.
In this study, strain Streptomyces sp. Act4Zk was isolated based on a method developed for the isolation of myxobacteria. Due to the low efficiency of the majority of conventional DNA extraction techniques, for molecular identification of the strain Streptomyces sp. Act4Zk, a new technique for DNA extraction of Actinobacteria was developed. In order to explore potential bioactivities of the strain, extracts of the fermented broth culture were prepared by an organic solvent (i.e. ethyl acetate) extraction method using. These ethyl acetate extracts were subjected to HPLC fractionation against standard micro-organisms, followed by LC/MS analysis. Based on morphological, physiological, biochemical and 16S rRNA gene sequence data, strain Streptomyces sp. Act4Zk is likely to be a new species of Streptomyces, close to Streptomyces genecies and Streptomyces roseolilacinus. Antimicrobial assay indicated high antifungal activity as well as antibacterial activity against Mycobacterium smegmatis and Gram-positive bacteria for the new strain. HPLC and LC/MS analyses of the extracts led to the identification of three different compounds and confirmed our hypothesis that the interesting species of the genus Streptomyces being a good producer of staurosporine and some derivatives.  相似文献   

7.
Endophytes were isolated from roots of wild Rehmannia glutinosa to screen the strains with antifungal metabolites. A strain identified as Verticillium sp. was selected for chemical and biological investigations because of the strong antifungal activity of the crude extract against Pyricularia oryzae P-2b. Chemical investigations of culture broth afforded three compounds: 2,6-dihydroxy-2-methyl-7-(prop-1E-enyl)-1-benzofuran-3(2H)-one, massariphenone and ergosterol peroxide. The metabolites were isolated by silica gel and Sephadex LH-20, 2,6-dihydroxy-2-methyl-7-(prop-1E-enyl)-1-benzofuran-3(2H)-one was reported for the first time and the chemical structure was established following the analysis of NMR, UV, IR, MS data. 2,6-Dihydroxy-2-methyl-7-(prop-1E-enyl)-1-benzofuran-3(2H)-one and ergosterol peroxide displayed clear inhibition of the growth of three pathogens as well as Verticillium sp.  相似文献   

8.
In the study, endophytic fungi isolated from Ophiorrhiza mungos were screened for camptothecin (CPT) biosynthetic potential by high performance liquid chromatography (HPLC). Among the 16 fungi screened, OmF3, OmF4, and OmF6 were identified to synthesize CPT. Further LC–MS analysis also showed the presence of CPT specific m/z of 349 for the extracts from OmF3, OmF4, and OmF6. However, the fragmentation masses with m/z of 320, 305, 277 and 220 specific to the CPT could be identified only for the OmF3 and OmF4. These CPT producing fungi were further identified as Meyerozyma sp. OmF3 and Talaromyces sp. OmF4. The cultures of these two fungi were then supplemented with nanoparticles and analyzed for the quantitative enhancement of CPT production by LC–MS/MS. From the result, Meyerozyma sp. OmF3 was found to produce 947.3 ± 12.66 μg/L CPT, when supplemented with 1 μg/mL zinc oxide nanoparticles and the same for uninduced parental strain OmF3 was only 1.77 ± 0.13 μg/L. At the same time, Talaromyces sp. OmF4 showed the highest production of 28.97 ± 0.37 μg/L of CPT when cultured with 10 μg/mL silver nanoparticles and the same for uninduced strain was 1.19 ± 0.24 μg/L. The observed quantitative enhancement of fungal CPT production is highly interesting as it is a rapid and cost effective method. The study is remarkable due to the identification of novel fungal sources for CPT production and its enhancement by nanoparticle supplementation.  相似文献   

9.
The antifungal cyclo-depeptide and the fatty acid were isolated and purified from an indigenous strain of Lactococcus lactis subsp. cremoris. Maximal activity was observed at pH 5.5 and 6.5, and at 30 °C under stationary conditions, which was detected in the culture supernatant 8 h post-inoculation in MRS broth until 22 h. The activity of antifungal compounds in the culture supernatant was sensitive to pH and temperature; and was protease-resistant. The antifungal compounds were concentrated by freeze-drying and ultrafiltration with activity retained in 1 kDa filtrates indicating low molecular weight metabolites. The compounds were further extracted by using different solvents amongst which, ethyl acetate provided the highest recovery. Antifungal compounds were separated on a silica gel column into two active fractions that were revealed to be tetradecanoic acid and cyclo-(Leu-Pro), a cyclic dipeptide, by GC–MS. Herein, we describe and attribute the biocontrol potential of L. lactis subsp. cremoris to the low molecular weight antifungal compounds isolated, which is the first report of their isolation from this strain. The broad antifungal spectrum of this candidate advocates further exploration of its biocontrol potential in managing fungal infections in different food and feed systems.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-020-00917-z.  相似文献   

10.
Yamaji K  Ishimoto H  Usui N  Mori S 《Mycorrhiza》2005,15(1):17-23
Ectomycorrhizal fungi can produce antifungal compounds in vitro as well as in symbiosis with the host plant that can reduce root diseases. The objective of this study was to isolate antifungal compounds from culture filtrate of Paxillus sp. 60/92, which can form mycorrhizas with Picea glehnii seedlings. Culture filtrate of Paxillus sp. 60/92 showed antifungal activity against Pythium vexans at pH 3–4 but not at pH 5–10, although sterile MMN-b liquid medium (pH 3–10) did not show antifungal activity. Upon separation of antifungal compounds in the culture filtrate, antifungal activity was detected in the organic acid and water-soluble phenolics fractions adjusted to pH 3. Although antifungal activity of individual fractions was lower than that of the culture filtrate, a mixture of these fractions showed antifungal activity similar to that of the culture filtrate. Furthermore, antifungal activity of oxalic acid, which is known to be produced by Paxillus involutus, was increased by mixing with the water-soluble phenolic fraction. Our findings indicate that Paxillus sp. 60/92 produces organic acids and water-soluble phenolics that together show antifungal activity at pH 3–4 against P. vexans.  相似文献   

11.
Diverse endophytic fungi exist within plant aerial tissues, with a global estimate of up to a million undescribed species. These endophytes constitute a rich bio-resource for exploration to discover new natural products. Here we investigate fungal endophytes associated with a medicinal plant, Nerium oleander L. (Apocynaceae). A total of 42 endophytic fungal strains were isolated from the host plant. Total antioxidant capacity, xanthine oxidase inhibitory activity, antimicrobial activity, and total phenolic content (TPC) were evaluated for 16 representative fungal cultures grown in improved Czapek’s broth and for the host plant. The total antioxidant capacities and phenolic contents of the fungal cultures ranged from 9.59 to 150.79 μmol trolox/100 mL culture, and from 0.52 to 13.95 mg gallic acid/100 mL culture, respectively. The fungal culture of an endophytic strain Chaetomium sp. showed the strongest antioxidant capacity, contained the highest level of phenolics, and to some extent inhibited xanthine oxidase activity with an IC50 value of 109.8 μg/mL. A significant positive correlation was found between antioxidant capacity and TPC in the tested samples. Most of the endophytic fungal cultures tested have a wide range of antimicrobial activities, which were not very strong, but much better than those of the host plant. The major bioactive constituents of the fungal cultures were investigated using LC-ESI-MS and GC-MS, and preliminary identification detected phenolics (e.g. phenolic acids and their derivatives, flavonoids) and volatile and aliphatic compounds. This study shows that the endophytic fungi isolated from N. oleander can be a potential antioxidant resource.  相似文献   

12.
A potential antagonist, Bacillus sp. LYLB4 isolated from pear fruits, was tested for its antifungal activity against postharvest pear pathogens. LYLB4 had a remarkable antifungal effect on Botryosphaeria dothidea. Although it showed a weak inhibition effect on the growth of Rhizopus stolonifer on potato dextrose agar (PDA) plates, LYLB4 almost completely destroyed R. stolonifer during direct contact in potato dextrose broth (PDB). LYLB4 treatment was able to significantly reduce disease incidence (by 68.9% and 100%, respectively) and lesion diameter (by 68.7% and 100%, respectively) of ring rot caused by B. dothidea and soft rot caused by R. stolonifer in pears. LYLB4 also suppressed several other phytopathogens in vitro, suggesting a broad‐spectrum antagonistic activity against fungal pathogens. 16S rRNA and gyrA sequence analysis indicated that LYLB4 is closely related to B. velezensis. Genome mining indicated that LYLB4 had 11 secondary metabolites encoding clusters, but that the surfactin and fengycin gene clusters may not be functional because of a large deletion. Matrix‐assisted laser desorption ionization‐time of flight mass spectra (MALDI‐TOF‐MS) demonstrated that iturins were the major lipopeptides, and that C16/C17 Bacillomycin D synthesis was stimulated when LYLB4 was co‐cultured with B. dothidea compared to the control. Overall, these results demonstrate that the main biocontrol mechanism adopted by LYLB4 could be through the production of toxic metabolites and direct contact with pathogens.  相似文献   

13.
The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A–E when grown on agar bearing moist polyester–cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A–E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester–cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative metabolite yields, as determined by HPLC analysis and measurement of antimicrobial activity. The application of such immobilized-cell fermentation methods under solid and liquid conditions facilitated the discovery of new antibiotic compounds, and offers new approaches to fungal fermentation for natural product discovery.  相似文献   

14.
Filamentous fungi have gained growing interest as sources of diverse pigmented secondary metabolites. Some specific polyketides from Ascomycetous species have demonstrated a wide range of industrial applications in food, cosmetic, textile, and in the design of pharmaceutical products. The formulation of recipes containing fungal polyketides has increased over recent years. Fusarium strains were proven useful to mankind in a variety of technologies. Nevertheless, there is still need of new isolates of Fusarium for use in emerging and already existing fields. In this article, we report the concomitant production of the bioactive red bikaverin along with two novel purple pigments by the phytopathogenic Fusarium oxysporum LCP531 strain isolated from soil. In literature, the production of purple pigment had only been described in cultures of Fusarium Fujikuroi, Fusarium verticillioides, and Fusarium graminearum. The production of these naphthoquinonic pigments, their distribution (either produced in mycelia or excreted in liquid medium) and their chemical profiles were investigated with respect to nutrient composition. The pigments were extracted by using a pressurized liquid extraction method, monitored by colorimetric analysis and characterized by HPLC-DAD chromatography. To our knowledge, this is the first report of these two novel wild-type purple naphtoquinones pigments along with bikaverin, where additionally, the culture conditions were put into perspective to optimize fermentation cultures and extraction process accordingly to the pigment/biomolecule desired. These colored naphthoquinones should be promising fungal functional compounds which could be expected to have a place of choice, along with other antibacterial, antifungal, antiviral, anticancer, and antineoplastic derivatives. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2738, 2019  相似文献   

15.
Oomycetes are one type of the most highly destructive of the diseases that cause damage to some important crop plants, such as potato late blight, cucumber downy mildew, and grape downy mildew. As main approach of the ongoing search for new botanical fungicide from plant, the secondary metabolites of Daspersa were investigated. Through efficient bioassay‐guided isolation, two new ( 1 and 2 ) and 12 known compounds ( 3  –  14 ) were isolated, and their structures were determined via extensive NMR, HR‐ESI‐MS, and IR. They were isolated from this genus for the first time except for compounds 11 and 12 . The biological properties of 1  –  14 were evaluated against Pseudoperonospora cubensis and Phytophthora infestans. Compounds 1  –  8 showed potent antifungal activity in vitro. Additionally, compound 3 has preferable control effect on cucumber downy mildew, showing dual effect of protection and treatment in vivo.  相似文献   

16.
Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2‐methylpropanoic acid 2,2‐dimethyl‐1‐(2‐hydroxy‐1‐methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.  相似文献   

17.
The needles of Picea glauca (white spruce) and Pinus strobus (white pine) trees infected with toxigenic fungal endophytes contain varying concentrations of their secondary metabolites that are toxic to either insect pests or needle pathogens. In the present study, liquid chromatography-mass spectrometric methods to determine needle concentrations of metabolites of four endophyte species were developed. The endophytes considered were a Phialocephala sp. (vermiculine) and Phialocephala scopiformis (rugulosin) from white spruce, as well as a Xylaria sp. (griseofulvin) and Lophodermium nitens (pyrenophorol) from white pine needles. To ensure that needles were infected with the associated fungal endophyte, suitable qPCR-based methods were also developed. There was a high degree of concordance between the qPCR analysis of the fungal mycelium and the LC-MS/MS quantification of the associated metabolites. Concentrations of the antifungal compounds griseofulvin and pyrenophorol were present in amounts that affect conifer needle diseases including white pine blister rust caused by Cronartium ribicola. Similarly, concentrations of the antiinsectan compounds vermiculine and rugulosin were in the range known to reduce the growth of Choristoneura fumiferana and mitigate foliage damage.  相似文献   

18.
【背景】四霉素(Tetramycin)和四烯菌素(Tetrin)是具有广谱抗真菌活性的四烯大环内酯类抗生素。链霉菌CB02959是一株雷纳霉素(Leinamycin)类化合物的潜在产生菌株,利用antiSMASH分析其基因组发现该菌株含有一个纳他霉素(Natamycin)类四烯大环内酯化合物的生物合成基因簇。【目的】对Streptomyces sp. CB02959中次级代谢产物进行研究,确定其是否可以产生四烯大环内酯化合物,对其发酵产物进行分离和结构鉴定,并进行初步的发酵优化以提高产量。【方法】基于生物信息学预测和高分辨质谱数据,推测CB02959中多烯化合物的结构;在不同发酵培养基中培养CB02959,确定适合大规模发酵的培养基;敲除tetrA基因以确定目标基因簇和四烯大环内酯化合物产生的相关性;分离和鉴定CB02959产生的主要代谢物的结构;通过改变培养基中葡萄糖、麦芽提取物和胰蛋白胨的含量,提高四烯大环内酯化合物的产量。【结果】通过对CB02959中纳他霉素类化合物生物合成基因簇的分析及16S rRNA基因序列的进化树分析,推测CB02959可能是一株新的四霉素和四烯菌素产生菌;在YEME发酵培养基中对CB02959进行大规模发酵,分离得到4个化合物,鉴定为四霉素A (1)、四霉素B (2)、四烯菌素A (3)、四烯菌素B (4);最后通过培养基的初步优化,将化合物1–4的产量分别提高至208.1、100.0、1 315.6、109.9 mg/L。【结论】通过基因组挖掘策略发现了一株新的四霉素和四烯菌素产生菌链霉菌CB02959,并通过培养基优化提升了其四烯大环内酯化合物的产量,此发现为这类抗真菌天然产物的后续开发奠定了基础。  相似文献   

19.
An endophytic fungus was isolated from the root of the medicinal plant Moringa oleifera Lam. Based on analyzing the rDNA sequence, the fungus was identified as Nigrospora sp. This is the first report of the isolation of endophytic Nigrospora from M. oleifera. By bioassay-guided fractionation, four antifungal secondary metabolites were isolated from liquid cultures of the fungus Nigrospora sp. LLGLM003, and their chemical structures were determined to be griseofulvin (1), dechlorogriseofulvin (2), 8-dihydroramulosin (3) and mellein (4) on the basis of spectroscopic analyses. Compound 2, 3 and 4 were isolated from Nigrospora sp. for the first time. In vitro antifungal assay showed that griseofulvin displayed clear inhibition of the growth of 8 plant pathogenic fungi. Dechlorogriseofulvin and mellein exhibited only weak antifungal activities, whereas 8-dihydroramulosin displayed no antifungal activities.  相似文献   

20.
 Embryogenic nucellar cultures of two polyembryonic mango cultivars, ‘Hindi’ and ‘Carabao’, were selected for resistance to the culture filtrate and phytotoxin of a virulent strain of Colletotrichum gloeosporioides Penz. that was isolated from mango leaves. The cultures were recurrently selected either with progressively increasing concentrations of culture filtrate or by continuous challenge with the same concentration of either culture filtrate phytotoxin. Mycelium growth was inhibited when the pathogen was cocultured with the selected, resistant embryogenic cultures. Conditioned plant growth medium containing macerated resistant embryogenic cultures did not inhibit mycelium growth, confirming that extracellular antifungal compounds were involved in the defense response. Enhanced secretion of chitinase and glucanase was observed in the plant growth medium in which resistant embryogenic cultures and regenerated somatic embryos were grown in comparison with the controls. Received: 6 February 1997 / Accepted: 4 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号