首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the anticancer effects of geraniin on ovarian cancer cells and the signaling pathways involved. Ovarian cancer cells were treated with different concentrations of geraniin for 48 h and examined for viability, apoptosis, mitochondrial membrane depolarization, and gene expression. Xenograft tumor studies were performed to determine the anticancer activity of geraniin in vivo. Geraniin significantly decreased cancer cell viability in a concentration‐dependent fashion. Geraniin significantly triggered apoptosis, which was accompanied by loss of mitochondrial membrane potential and increased cytochrome c release and caspsase‐3 activity. Mechanistically, geraniin significantly downregulated Mcl‐1 and impaired NF‐κB p65 binding to the mcl‐1 promoter. Overexpression of Mcl‐1 significantly reversed geraniin‐induced apoptosis in OVCAR3 cells. In addition, geraniin retarded ovarian cancer growth and reduced expression of phospho‐p65 and Mcl‐1. Collectively, geraniin elicits growth suppression in ovarian cancer through inhibition of NF‐κB and Mcl‐1 and may provide therapeutic benefits for this malignancy.  相似文献   

2.
Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome‐c (cyt‐c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt‐c release in these events. In accordance with single‐cell experiments, our model showed that loss of cyt‐c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨm from ?142 to ?88 mV, with active caspase‐3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨm. However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt‐c after release and (ii) the cell's glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.  相似文献   

3.
Thymoquinone (TQ; 1 ) is a weak anticancer constituent of black seed oil. Derivatives bearing terpene‐terminated 6‐alkyl residues were tested in cells of human HL‐60 leukemia, 518A2 melanoma, multidrug‐resistant KB‐V1/Vbl cervix, and MCF‐7/Topo breast carcinomas, as well as in non‐malignant human foreskin fibroblasts. Derivatives with a short four‐atom spacer between quinone and cyclic monoterpene moieties were more antiproliferative than analogues with longer spacers. 6‐(Menthoxybutyryl)thymoquinone ( 3a ) exhibited single‐digit micromolar IC50 (72 h) values in all four cell lines. It was seven times more active than TQ ( 1 ) in 518A2 melanoma cells and four times in KB‐V1/Vbl cervix carcinoma cells, while only half as toxic in the fibroblasts. Compound 3a was also not a substrate for the P‐gp and BCRP drug transporters of the resistant cancer cells. The caryophyllyl and germacryl conjugates 3e and 3f specifically inhibited the growth of the resistant MCF‐7 breast carcinoma cells. Conjugation of TQ with the triterpene betulinic acid via the OH group as in 3g led to a loss in activity, while conjugation via the carboxylic acid afforded compound 4 with nanomolar IC50 (72 h) activity against HL‐60 cells. All anticancer‐active derivatives of TQ ( 1 ) induced apoptosis associated with DNA laddering, a decrease in mitochondrial membrane potential and a slight increase in reactive oxygen species.  相似文献   

4.
Ziyuglycoside I (Ziyu I), one of the major components isolated from the root of Sanguisorba officinalis L., has been proved for the antitumor properties on oral cancer, prostate cancer, and colorectal cancer. However, the effect of Ziyu I on retinoblastoma (RB) is not well understood. In this study, we investigated the inhibitory effect and underlying molecular mechanism of Ziyu I on human RB WERI‐Rb‐1 cells. Our results indicated that Ziyu I could suppress cell viability and induce mitochondrial‐dependent cell apoptosis in WERI‐Rb‐1 cells. Furthermore, Ziyu I treatment increased p53 expression as well as improved p53 stabilization through downregulation of pS166‐Mdm2 and upregulation of phosphorylated‐ and acetylated‐p53. Blockade of p53 significantly attenuated Ziyu I‐induced mitochondrial dysfunction. Our findings demonstrate that Ziyu I exhibits excellent anticancer effect on human RB WERI‐Rb‐1 cells by triggering p53 activation, and imply Ziyu I as a potential compound for chemotherapy of human RB.  相似文献   

5.
Two series of 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐ones and N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines were designed initially as potential acetylcholine esterase inhibitors. Biological evaluation demonstrated that N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines significantly inhibited AChE activity. Especially, two compounds of them were found to be the most potent with relative AChE inhibition percentages of 87 % in comparison to donepezil. The docking studies with AChE showed similar interactions between donepezil and four derivatives. N‐(1‐Benzylpiperidin‐4‐yl)quinazolin‐4‐amines also exhibited significant DPPH scavenging effects. The two series of compound also exerted moderate to good cytotoxicity against three human cancer cell lines, including SW620 (human colon cancer), PC‐3 (prostate cancer), and NCI?H23 (lung cancer), with 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one being the most cytotoxic agent. 3‐[(1‐Benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one significantly induced early apoptosis and arrested the SW620 cells at G2/M phase. From this study, two compounds of N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines could serve as new leads for further design and AChE inhibitors, while 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one could serve as a new lead for the design and development of more potent anticancer agents.  相似文献   

6.
7.
IR‐783 is a kind of heptamethine cyanine dye that exhibits imaging, cancer targeting and anticancer properties. A previous study reported that its imaging and targeting properties were related to mitochondria. However, the molecular mechanism behind the anticancer activity of IR‐783 has not been well demonstrated. In this study, we showed that IR‐783 inhibits cell viability and induces mitochondrial apoptosis in human breast cancer cells. Exposure of MDA‐MB‐231 cells to IR‐783 resulted in the loss of mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) depletion, mitochondrial permeability transition pore (mPTP) opening and cytochrome c (Cyto C) release. Furthermore, we found that IR‐783 induced dynamin‐related protein 1 (Drp1) translocation from the cytosol to the mitochondria, increased the expression of mitochondrial fission proteins mitochondrial fission factor (MFF) and fission‐1 (Fis1), and decreased the expression of mitochondrial fusion proteins mitofusin1 (Mfn1) and optic atrophy 1 (OPA1). Moreover, knockdown of Drp1 markedly blocked IR‐783‐mediated mitochondrial fission, loss of MMP, ATP depletion, mPTP opening and apoptosis. Our in vivo study confirmed that IR‐783 markedly inhibited tumour growth and induced apoptosis in an MDA‐MB‐231 xenograft model in association with the mitochondrial translocation of Drp1. Taken together, these findings suggest that IR‐783 induces apoptosis in human breast cancer cells by increasing Drp1‐mediated mitochondrial fission. Our study uncovered the molecular mechanism of the anti‐breast cancer effects of IR‐783 and provided novel perspectives for the application of IR‐783 in the treatment of breast cancer.  相似文献   

8.
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2 , the compound with the lowest mean GI50 value, induced both caspase‐dependent apoptosis and arrest at the G0/G1 phase in acute lymphoblastic leucemia CCRF‐CEM cells. Consistent with this, PARP cleavage; enhanced caspase‐2, ‐3, ‐8 and ‐9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF‐CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6 , the compound with the highest selectivity index for cancer cells, resulted in G2/M cell cycle arrest and caspase‐independent cell death in p53 deficient HTB‐54 lung cancer cells. Autophagy inhibitors 3‐methyladenine, wortmannin and chloroquine inhibited DPDS 6 ‐induced cell death. Consistent with autophagy, increased LC3‐II and decreased SQSTM1/p62 levels were detected in HTB‐54 cells in response to DPDS 6 . Induction of JNK phosphorylation and a reduction in phospho‐p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125‐protected HTB‐54 cells from DPDS 6 ‐induced cell death indicating that JNK activation is involved in DPDS 6 ‐induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.  相似文献   

9.
Ceramide is a member of the sphingolipid family of bioactive molecules demonstrated to have profound, diverse biological activities. Ceramide is a potential chemotherapeutic agent via the induction of apoptosis. Exposure to ceramide activates extracellular‐signal‐regulated kinases (ERK)1/2‐ and p38 kinase‐dependent apoptosis in human ovarian cancer OVCAR‐3 cells, concomitant with an increase in the expression of COX‐2 and p53 phosphorylation. Blockade of cyclooxygenase‐2 (COX‐2) activity by siRNA or NS398 correspondingly inhibited ceramide‐induced p53 Ser‐15 phosphorylation and apoptosis; thus COX‐2 appears at the apex of the p38 kinase‐mediated signaling cascade induced by ceramide. Induction of apoptosis by ceramide or resveratrol was inhibited by the endocytosis inhibitor, cytochalasin D (CytD); however, cells exposed to resveratrol showed greater sensitivity than ceramide‐treated cells. Ceramide‐treated cells underwent a dose‐dependent reduction in trans‐membrane potential. Although both ceramide and resveratrol induced the expressions of caspase‐3 and ‐7, the effect of inducible COX‐2 was different in caspase‐7 expression induced by ceramide compared to resveratrol. In summary, resveratrol and ceramide converge on an endocytosis‐requiring, ERK1/2‐dependent signal transduction pathway and induction of COX‐expression as an essential molecular antecedent for subsequent p53‐dependent apoptosis. In addition, expressions of caspase‐3 and ‐7 are observed. However, a p38 kinase‐dependent signal transduction pathway and change in mitochondrial potential are also involved in ceramide‐induced apoptosis. J. Cell. Biochem. 114: 1940–1954, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The insufficient penetration through the cell membranes is one of the major drawbacks of chemotherapeutics such as 5‐fluorouracil (5‐FU; 1 ). To improve the penetration, a useful strategy is the attachment of lipophilic moieties. Thus, we have synthesized a series of nucleolipid derivatives of 5‐fluorouridine (5‐FUrd; 2a ), carrying lipophilic moieties at N(3) and/or at the 2′,3′‐O position, i.e., 3a, 3b, 4 – 7 , and tested their cytostatic/cytotoxic activities towards three carcinoma cell lines (colon (HT‐29), hepatocellular (HepG2), and renal (RENCA)) in comparison with 5‐FU ( 1 ) and 5‐FUrd ( 2a ). After 48 h of incubation, four derivatives, 3a, 3b, 5 , and 7 , showed inhibitory effects on the survival of HT‐29, HepG2, and RENCA cells. Additionally, to differentiate between anticancer and side‐effects, we tested the cytotoxicity of the derivatives in human macrophages. Interestingly, the derivatives 4, 5 , and 6 did not exhibit any effects on survival of THP‐1 macrophages. Furthermore, we investigated the apoptosis induction of compound 1 and 2a , and the above‐mentioned derivatives in HT‐29 cells. Derivative 5 showed the highest significant (p<0.05; p<0.01) increase of the apoptosis at 80 μM after 2‐h or 4‐h treatment, as well as after 6‐h incubation at 40 μM (p<0.05). Real‐time PCR revealed that 40‐μM derivative 5 showed a 1.8‐fold increase of the pro‐apoptotic caspase‐3 gene and a twofold significant increase (p<0.01 and p<0.05 vs. control and 1 , resp.) of the tumor suppressor TP53 gene, whereas the other compounds did not show any effect. We demonstrated that some 5‐FUrd derivatives such as compound 5 are more effective than 5‐FU or 5‐FUrd concerning a cytotoxic (vs. cytostatic (5‐FU, 5‐FUrd)) effect on different cancer cell lines, but without cytotoxic side‐effects on differentiated macrophages. Thus, compound 5 is suggested as a novel potent cytotoxic multi‐anti‐cancer drug.  相似文献   

11.
A series of 3‐(substituted aroyl)‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT‐26, HeLa, MGC80‐3, NCI‐H460 and SGC‐7901 cells (IC50 = 8.2 – 31.7 μm ); 3g , 3n and 3a were the most potent compounds against CHO (IC50 = 8.2 μm ), HCT‐15 (IC50 = 21 μm ) and MCF‐7 cells (IC50 = 18.7 μm ), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC50 > 100 μm ). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents.  相似文献   

12.
Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N‐acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA‐2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase‐3, ‐8, ‐9 activities and Bcl‐2, Bax, Cyt‐c, Annexin V‐FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50) and H2O2 for 24 h increased Caspase‐3, ‐8, ‐9 activities, Cyt‐c and Bax levels and decreased Bcl‐2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2‐dependent increases in Caspase‐3, ‐8, ‐9 activities, Bax and Cyt‐c levels and bleomycin/H2O2‐dependent decrease in Bcl‐2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin‐induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells. J. Cell. Biochem. 114: 1685–1694, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
(RS)‐Naringenin is a flavanone well‐known for its beneficial health‐related properties, such as its anti‐inflammatory activity. The preparative enantioselective chromatographic resolution of commercial (RS)‐naringenin was performed on a Chiralpak AD‐H column (500×50 mm i.d., dp 20 μm) using MeOH as eluent. The developed method is in accordance with the principles of green chemistry, since the environmental impact was lowered by recycling of the eluent, and allowed the production of gram amounts of each enantiomer with high purity (chemical purity >99%, enantiomeric excess (ee) >94%). Racemic and enantiomeric naringenin were subjected to an exhaustive in vitro investigation of anti‐inflammatory activity, aimed at evaluating the relevance of chirality. The assay with cultured human peripheral blood mononuclear cells (hPBMC) activated by phytohemagglutinin A revealed that (R)‐naringenin was more effective in inhibiting T‐cell proliferation than the (S)‐enantiomer and the racemate. Moreover, (R)‐naringenin significantly reduced proinflammatory cytokine levels such as those of TNF‐α and, with less potency, IL‐6. These results evidenced the anti‐inflammatory potential of naringenin and the higher capacity of (R)‐naringenin to inhibit both in vitro hPBMC proliferation and cytokine secretion at non toxic doses. Thus, (R)‐naringenin is a promising candidate for in vivo investigation.  相似文献   

14.
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H‐3,6‐diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF‐7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF‐7 cells. Further, cell cycle analysis illustrated that the S‐phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF‐10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria‐dependent and cell death receptor‐dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF‐7 cells, thus suggesting its potential as a chemotherapeutic drug.  相似文献   

15.
Andrographolide‐lipoic acid conjugate (AL‐1) is a new in‐house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti‐cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL‐1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose‐dependent manner. Thirty‐one AL‐1‐regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death‐related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL‐1. Functional studies confirmed that AL‐1 induced apoptosis of K562 cells through a ROS‐dependent mechanism, and anti‐oxidant, N‐acetyl‐l ‐cysteine, could completely block AL‐1‐induced cytotoxicity, implicating that ROS generation played a vital role in AL‐1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial‐mediated apoptosis. The current work reveals that a novel andrographolide derivative AL‐1 exerts its anticancer cytotoxicity through a ROS‐dependent DNA damage and mitochondrial‐mediated apoptosis mechanism.  相似文献   

16.
Protein tyrosine phosphatases are involved in diverse human diseases, including cancer, diabetes and inflammatory disorders. Loss of Vaccinia‐H1 related phosphatase (VHR) has been shown to arrest at the G1‐S and G2‐M transitions of the cell cycle, and to increases cell death of prostate cancer cells through JNK activation, suggesting that VHR can be considered as an anticancer target. In this study, 658 natural products were screened through in vitro enzyme assay to identify VHR inhibitor. Among the VHR‐inhibitory compounds, 1,2,3,4,6‐O‐pentagalloylglucose (PGG) was selected for further study as it has been reported to show antitumor effects against tumor model mice, but its direct target has not been identified. PGG inhibited the catalytic activity of VHR (Ki=53 nm ) in vitro. Furthermore, the incubation of HeLa cervical cancer cells with PGG dramatically decreased cell viability and markedly increased the protein levels of the cleaved PARP, a hallmark of apoptosis. In addition, treatment of HeLa cells with PGG significantly reduced the protein levels of cyclin D1, Bcl‐2 and STAT3 phosphorylation. Taken together, these results suggest that PGG could be a potential therapeutic candidate for the treatment of cervical cancer through VHR inhibition.  相似文献   

17.
Cardiomyocyte apoptosis contributes to the development of coxsackievirus B3 (CVB3)‐induced myocarditis, but the mechanism for the apoptosis by CVB3 infection remains unclear. Here, we showed that CVB3‐induced endoplasmic reticulum (ER) stress response and apoptosis in cultured H9c2 cardiomyocytes. We found that Ca2+‐calmodulin‐dependent kinase II (CaMKII) was activated by ER stress‐dependent intracellular Ca2+ overload in the CVB3‐infected H9c2 cardiomyocytes. Treatment with an inhibitor of ER stress, 4‐phenylbutyric acid (4‐PBA), attenuated intracellular Ca2+ accumulation indirectly and reduced CaMKII activity. Inhibition of CaMKII with pharmacological inhibitor (KN‐93) or short hairpin RNA reduced CVB3‐induced H9c2 apoptosis and repressed cytochrome c release from mitochondria to cytoplasm; whereas overexpression of the activated mutant of CaMKII (CaMKII‐T287D) enhanced CVB3‐induced H9c2 apoptosis and mitochondrial cytochrome c release, which could be alleviated by blocking of mitochondrial Ca2+ uniporter or mitochondrial permeability transition pore. Further in vivo investigation revealed that blocking of CaMKII with KN‐93 prevented cardiomyocytes apoptosis and improved cardiac contractile function in CVB3‐infected mouse heart. Collectively, these findings provide a novel evidence that CaMKII plays a vital role in the promotion of CVB3‐induced cardiomyocyte apoptosis, which links ER stress and mitochondrial Ca2+ uptake.  相似文献   

18.
Triptolide is a diterpenoid triepoxide derived from the traditional Chinese medical herb Tripterygium wilfordii. In the present study, we demonstrated that this phytochemical attenuated colon cancer growth in vitro and in vivo. Using a proteomic approach, we found that 14‐3‐3 epsilon, a cell cycle‐ and apoptosis‐related protein, was altered in colon cancer cells treated with triptolide. In this regard, triptolide induced cleavage and perinuclear translocation of 14‐3‐3 epsilon. Taken together, our findings suggest that triptolide may merit investigation as a potential therapeutic agent for colon cancer, and its anticancer action may be associated with alteration of 14‐3‐3 epsilon. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Obesity is directly associated with cancer, cardiovascular injury, hypertension, and type 2 diabetes. To date, Yamamoto identified that hot water extracts of edible Chrysanthemum (EC) induced cell size reduction, up‐regulation of adiponectin expression, and glucose absorption inhibition in 3T3‐L1 cells during adipocyte differentiation. Furthermore, EC showed antidiabetic effects such as improvement in insulin resistance and the down‐regulation of the blood glucose level and liver lipid content in type 2 diabetes model mice. In this study, we attempted to identify the antidiabetic components in EC. The methanol fraction from EC that showed relatively strong biological activity was purified by chromatography to obtain acacetin‐7‐O‐glucoside, apigenin‐7‐O‐glucoside, kaempferol‐7‐O‐glucoside, and naringenin‐7‐O‐glucoside. Among the isolated compounds and their aglycones, naringenin (NA) and naringenin‐7‐O‐glucoside (NAG) up‐regulated the intracellular accumulation of lipid and adiponectin‐secretion and down‐regulated the diameter of 3T3‐L1 cells during adipocyte differentiation. Because the PPARγ antagonist BADGE and PI3K/Akt inhibitors wortmannin and LY29004 inhibited the intracellular lipid accumulation by NA and NAG associated with adipogenesis, it was considered that NA and NAG showed the above‐mentioned activities via the activation of PPARγ as well as phosphorylation of the PI3K/Akt pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号