首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Peripheral blood samples collected from healthy human volunteers were exposed in vitro to 2.45 GHz or 8.2 GHz pulsed-wave radiofrequency (RF) radiation. The net forward power, average power density, mean specific absorption rate, and the temperature maintained during the 2-h exposure of the cells to 2.45 GHz or 8.2 GHz were, respectively, 21 W or 60 W, 5 mW/cm(2) or 10 mW/cm(2), 2.13 W/kg or 20.71 W/kg, and 36.9 +/- 0.1 degrees C or 37.5 +/- 0.2 degrees C. Aliquots of the same blood samples that were either sham-exposed or exposed in vitro to an acute dose of 1.5 Gy gamma radiation were used as unexposed and positive controls, respectively. Cultured lymphocytes were examined to determine the extent of cytogenetic damage assessed from the incidence of chromosomal aberrations and micronuclei. Under the conditions used to perform the experiments, the levels of damage in RF-radiation-exposed and sham-exposed lymphocytes were not significantly different. Also, there were no significant differences in the response of unstimulated lymphocytes and lymphocytes stimulated with phytohemagglutinin when exposed to 8.2 GHz RF radiation. In contrast, the positive control cells that had been subjected to gamma irradiation exhibited significantly more damage than RF-radiation- and sham-exposed lymphocytes.  相似文献   

2.
This study concerns with the multiple treatment of the target site to potent carcinogen and the super imposition of low level radiofrequency and microwave radiation. Swiss albino mice (male) were used for this investigation. The study has been divided in two parts, part A: a single dose of 7,12-dimethylbenz(a)anthracene (DMBA) 100 μg/animal was applied topically on the skin of mice and were exposed to 112 MHz amplitude modulated (AM) at 16 Hz (power density 1.0 mW/cm(2), specific absorption rate (SAR) 0.75 W/kg). Similarly after a single dose of DMBA, mice were exposed to 2.45 GHz radiation (power density of 0.34 mW/cm(2), SAR, 0.1 W/kg), 2 h/day, 3 days a week for a period of 16 weeks. The two sets of experiments were carried out separately. Part B: mice were transplanted intraperitoneally (ip) with ascites 8 × 10(8) (Ehrlich-Lettre ascites, strain E) carcinoma cells per mouse. These mice were exposed to 112 MHz amplitude modulated at 16 Hz and 2.45 GHz radiation separately for a period of 14 days. There was no tumor development in mice exposed to RF and MW. Similarly a topical application of single dose of DMBA followed by RF/MW exposure also did not produce any visible extra tumor on the skin of mice. On the other hand mice were transplanted intraperitoneally with ascites (8 × 10(8) cell/ml) and subsequently exposed to above mentioned fields for 14 days showed a slight increase in the cell numbers as compared to the control group. However, the increase is insignificant. There were insignificant differences either in the mortality or cell proliferation among the control and exposed group. This results show that low level RF or MW do not alter tumor growth and development as evidenced by no observable change in tumor size.  相似文献   

3.
An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family.  相似文献   

4.
We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.  相似文献   

5.
To compare the effects of exposure to a near-resonant frequency of microwaves at two orientations with a higher frequency exposure, five rhesus monkeys were exposed for 4 hr to 225 MHz, electric field oriented parallel to the long axis of the body (225 MHz-E), and to 225 MHz, magnetic field orientation (225 MHz-H), or to 1290 MHz, electric field orientation. On a separate occasion, the monkeys were exposed at night to 225 MHz-E. Exposures were conducted with the animal chair restrained in an anechoic chamber with rectal temperature continuously monitored. Blood samples were taken hourly during the 225-MHz-E exposures for cortisol analysis. The power densities used were 0, 1.2, 2.5, 5.0, 7.5, 10.0, and 15.0 mW/cm2 for 225 MHz-E (day), 0 and 5 mW/cm2 (225 MHz-E night and 225 MHz-H), and 0, 20, 28, and 38 mW/cm2 (1290 MHz). The monkeys were unable to tolerate exposure at power densities equal to or greater than 7.5 mW/cm2 (5.1 W/kg) at 225 MHz-E for longer than 90 min. The criterion for tolerance was that the rectal temperature would not exceed 41.5 degrees C. Average rectal temperature increases for day exposure to 225 MHz-E were 0.4 and 1.7 degrees C for 4-hr exposures to 2.5 and 5.0 mW/cm2 (1.7 and 3.4 W/kg). No changes in circulating cortisol levels occurred during any exposures to 5 mW/cm2 or less. Night exposures to 5 mW/cm2 (3.4 W/kg) at 225 MHz-E raised mean rectal temperature 2.1 degrees C. Exposure to 5 mW/cm2 (1.2 W/kg) at 225 MHz-H for 4 hr resulted in a 0.2 degree rise in mean rectal temperature. For 4 hr of 1290-MHz exposure to 20, 28, or 38 mW/cm2 (2.9, 4.0, and 5.4 W/kg), the mean body temperature increases were 0.4, 0.7, and 1.3 degrees C, respectively. The degree of hyperthermia caused by radiofrequency (rf) exposure was shown to be frequency and orientation dependent for equivalent power densities of exposure.  相似文献   

6.
A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human cells.  相似文献   

7.
The effect of exposing rats to amplitude modulated radiofrequency radiation (112 MHz modulated to 16 Hz) during development and growth has been examined. Wistar rats (35 days old) when exposed at above frequency at the power level 1.0 mW/cm2 (SAR, 0.75 W/kg) for 35 days showed enhanced ornithine decarboxylase activity and Ca2+ efflux in brain indicating potential health hazards due to exposure.  相似文献   

8.
Although decreased serum thyrotropin (TSH) concentration has been found to be part of the endocrine response pattern in rats exposed to microwaves and other stimuli, the response of individual endocrine organs was not activated simultaneously by a given irradiance. Therefore, analytical evaluation of the function of endocrine organs individually as well as collectively is required to characterize the extent of biological involvement in microwave exposure. We have studied the changes in TSH concentration in unanesthetized rats exposed to 2.45 GHz amplitude modulated (120 Hz) microwaves in the far field for 2 and 4 h, between 0 and 55 mW/cm2, and from 1 to 10 times to demonstrate any possible cumulation, acclimation, or sensitization process. Ether inhalation was administered to test the responsiveness of TSH in groups of rats that failed to respond to microwave exposure by lowering TSH concentration. In addition, groups of rats were sampled 24 h after microwave exposure to test the persistency of the microwave effect on serum TSH concentration. Results showed that TSH concentration decreased in rats after microwave exposure. Influence of microwave exposure on serum TSH concentration was independent of the number of exposures indicating absence of cumulation, acclimation, or sensitization. The microwave effect on serum TSH could be dependent on duration of exposure. Decreased TSH concentration was usually accompanied by increased colonic temperature. For 4-h exposure, the lowest irradiance was 20 mW/cm2 or a 0.3 degree C increase in colonic temperature independent of the number of exposures. For 2-h exposure, the lowest irradiance was 30 mW/cm2 or a 1.1 degree C increase in colonic temperature regardless of the number of exposures. All the rats exposed at 10 mW/cm2 for 2 h had a lower TSH concentration than those of sham-exposed rats. Occasionally, significant reduction in TSH concentration could not be found in rats exposed to 20 or 25 mW/cm2 for 2 h. None of the rats exposed at an irradiance lower than 10 mW/cm2 had any change in TSH concentration. Failure of change in TSH concentration in response to microwave exposure was not a reflection of a deficiency since these rats responded to ether inhalation by lowering their TSH concentration. The effect of microwave exposure on TSH concentration was not persistent after exposure. The relation between TSH concentration and colonic temperature was curvilinear (exponential). From these results, two mechanisms and their implications for man were discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

10.
A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation.  相似文献   

11.
To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.  相似文献   

12.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

13.
Increased serum enzyme activity in microwave-exposed rats   总被引:1,自引:0,他引:1  
Heat stable serum enzymes were studied in rats exposed to microwaves (2.45 GHz, 120 Hz amplitude modulated) 24 hr after a single 4-hr exposure or immediately after 3 and 10 exposures to 0.1 to 55 mW/cm2. In addition, stable colonic temperature at 41.5 degrees C for 30 min was maintained by microwave exposure in a group of five rats under barbiturate anesthesia. Alkaline phosphatase and lactic dehydrogenase did not increase as a result of microwave exposure. Increased serum glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) were noted in the 41.5 degrees C group 24 hr after exposure. A threshold body temperature for acute cellular injury after microwave exposure was demonstrated. The acute cellular injury could be in the liver. These mild elevations in the serum enzyme levels (mean +/- SE, GOT = 167 +/- 40 U/liter: GPT = 74 +/- 26 U/liter) indicated that the injuries were not accompanied by any significant sequelae in the rat. From this threshold and colonic temperature (41.5 degrees C for 30 min) in barbiturate-anesthetized, microwave-exposed rats, we derived a tentative threshold for the whole-body average absorption rate at 14 W/kg (70 mW/cm2 at 2.45 GHz for adult rats) for 4 hr. This tentative threshold is subject to changes by duration of exposure and by compounding variables influencing maintenance of body temperature.  相似文献   

14.
A total of 550 fertile chicken eggs (White Leghorn) were exposed to a radiofrequency (RF) electromagnetic field of 1.25 GHz (continuous wave) at six different power flux densities in the range of 9.0-0.75 mW/cm(2). The eggs were exposed either continuously throughout the whole 21 days of incubation (long-term exposure) or in a short-term exposure (1-2 h/day). The temperatures of the embryonic tissue and the amniotic fluid, respectively, were measured with inserted temperature probes. This study was designed to investigate the relationship between exposure and temperature changes in exposed tissues, without considering biological and medical effects. This knowledge is of general interest for studies of nonthermic teratological or embryo-lethal effects of exposure to electromagnetic fields (EMFs). Throughout the entire 21 days of embryonic development, the mean temperature increases in the eggs during the exposure were found to be up to 0.25 degrees C for a power flux density of 1.25 mW/cm(2) and increased to 2.3 degrees C for 9.0 mW/cm(2). The corresponding maximum whole-body SARs for the embryos over the 21 days of embryonic development were 1.45 and 10.44 W/kg, respectively. At 0.75 mW/cm(2) (0.87 W/kg) the extent of the RF-field induced hyperthermia was within the measurement accuracy (+/-0.1 degrees C) of the temperature probes used in the tests. The field-induced temperature increase was greatest in the first week of incubation and was less pronounced in the last (third) week before hatching. In both the short- and the long-term exposures, the temperature of the exposed tissue and the amniotic fluid, respectively, reached its maximum (asymptotic) approximately 40-50 min after the RF field was switched on. After the field was switched off, the temperature inside the exposed eggs returned to its initial value within 40-50 min.  相似文献   

15.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

16.
Anesthetized rats were exposed to 5.6-GHz continuous wave radiofrequency radiation at an average power density of 60 mW/cm2 (average specific absorption rate 12 W/kg). Exposure was performed to raise colonic temperature from 38.5 to 39.5 degrees C. Following acute administration of chlorpromazine, body temperature exhibited a faster return to baseline temperature when exposure was discontinued. When exposure was initiated at 38.5 degrees C and continued until lethal temperatures resulted, chlorpromazine-treated animals exhibited significantly shorter survival times than saline-treated animals. Thus, although chlorpromazine enhanced thermo-regulatory efficiency at colonic temperatures below 39.5 degrees C, the drug caused increased susceptibility to terminal radiofrequency radiation exposure. The present results, when compared to previous studies of irradiation at 2.8 GHz, indicate that the effects of chlorpromazine on thermal responses to RFR during intermittent and terminal exposure are similar at both 2.8 and 5.6 GHz.  相似文献   

17.
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.  相似文献   

18.
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group.

Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.  相似文献   


19.
Human peripheral blood samples collected from three healthy human volunteers were exposed in vitro to pulsed-wave 2450 MHz radiofrequency (RF) radiation for 2 h. The RF radiation was generated with a net forward power of 21 W and transmitted from a standard gain rectangular antenna horn in a vertically downward direction. The average power density at the position of the cells in the flask was 5 mW/cm(2). The mean specific absorption rate, calculated by finite difference time domain analysis, was 2.135 (+/-0.005 SE) W/kg. Aliquots of whole blood that were sham-exposed or exposed in vitro to 50 cGy of ionizing radiation from a (137)Cs gamma-ray source were used as controls. The lymphocytes were examined to determine the extent of primary DNA damage (single-strand breaks and alkali-labile lesions) using the alkaline comet assay with three different slide-processing schedules. The assay was performed on the cells immediately after the exposures and at 4 h after incubation of the exposed blood at 37 +/- 1 degrees C to allow time for rejoining of any strand breaks present immediately after exposure, i.e. to assess the capacity of the lymphocytes to repair this type of DNA damage. At either time, the data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to the comet tail length, fluorescence intensity of the migrated DNA in the tail, and tail moment. The conclusions were similar for each of the three different comet assay slide-processing schedules examined. In contrast, the response of lymphocytes exposed to ionizing radiation was significantly different from RF-radiation- and sham-exposed cells. Thus, under the experimental conditions tested, there is no evidence for induction of DNA single-strand breaks and alkali-labile lesions in human blood lymphocytes exposed in vitro to pulsed-wave 2450 MHz radiofrequency radiation, either immediately or at 4 h after exposure.  相似文献   

20.
Micronucleus induction after whole-body microwave irradiation of rats   总被引:4,自引:0,他引:4  
Adult male Wistar rats were exposed for 2 h a day, 7 days a week for up to 30 days to continuous 2,450 MHz radiofrequency microwave (rf/MW) radiation at a power density of 5-10 mW/cm(2). Sham-exposed rats were used as controls. After ether anesthesia, experimental animals were euthanized on the final irradiation day for each treated group. Peripheral blood smears were examined for the extent of genotoxicity, as indicated by the presence of micronuclei in polychromatic erythrocytes (PCEs). The results for the time-course of PCEs indicated significant differences (P<0.05) for the 2nd, the 8th and the 15th day between control and treated subgroups of animals. Increased influx of immature erythrocytes into the peripheral circulation at the beginning of the experiment revealed that the proliferation and maturation of nucleated erythropoietic cells were affected by exposure to the 2,450 MHz radiofrequency radiation. Such findings are indicators of radiation effects on bone-marrow erythropoiesis and their subsequent effects in circulating red cells. The incidence of micronuclei/1,000 PCEs in peripheral blood was significantly increased (P<0.05) in the subgroup exposed to rf/MW radiation after eight irradiation treatments of 2 h each in comparison with the sham-exposed control group. It is likely that an adaptive mechanism, both in erythrocytopoiesis and genotoxicity appeared in the rat experimental model during the subchronic irradiation treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号