首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this research was to use a pedal force decomposition approach to quantify the amount of negative muscular crank torque generated by a group of competitive cyclists across a range of pedaling rates. We hypothesized that negative muscular crank torque increases at high pedaling rates as a result of the activation dynamics associated with muscle force development and the need for movement control, and that there is a correlation between negative muscular crank torque and pedaling rate. To test this hypothesis, data were collected during 60, 75, 90, 105 and 120 revolutions per minute (rpm) pedaling at a power output of 260 W. The statistical analysis supported our hypothesis. A significant pedaling rate effect was detected in the average negative muscular crank torque with all pedaling rates significantly different from each other (p < 0.05). There was no negative muscular crank torque generated at 60 rpm and negligible amounts at 75 and 90 rpm. But substantial negative muscular crank torque was generated at the two highest pedaling rates (105 and 120 rpm) that increased with increasing pedaling rates. This result suggested that there is a correlation between negative muscle work and the pedaling rates preferred by cyclists (near 90 rpm), and that the cyclists' ability to effectively accelerate the crank with the working muscles diminishes at high pedaling rates.  相似文献   

2.
The objectives of this study were twofold. The first was to develop a forward dynamic model of cycling and an optimization framework to simulate pedaling during submaximal steady-state cycling conditions. The second was to use the model and framework to identify the kinetic, kinematic, and muscle timing quantities that should be included in a performance criterion to reproduce natural pedaling mechanics best during these pedaling conditions. To make this identification, kinetic and kinematic data were collected from 6 subjects who pedaled at 90 rpm and 225 W. Intersegmental joint moments were computed using an inverse dynamics technique and the muscle excitation onset and offset were taken from electromyographic (EMG) data collected previously (Neptune et al., 1997). Average cycles and their standard deviations for the various quantities were used to describe normal pedaling mechanics. The model of the bicycle-rider system was driven by 15 muscle actuators per leg. The optimization framework determined both the timing and magnitude of the muscle excitations to simulate pedaling at 90 rpm and 225 W. Using the model and optimization framework, seven performance criteria were evaluated. The criterion that included all of the kinematic and kinetic quantities combined with the EMG timing was the most successful in replicating the experimental data. The close agreement between the simulation results and the experimentally collected kinetic, kinematic, and EMG data gives confidence in the model to investigate individual muscle coordination during submaximal steady-state pedaling conditions from a theoretical perspective, which to date has only been performed experimentally.  相似文献   

3.
An understanding of the coordination of the leg muscles in recumbent pedaling would be useful to the design of rehabilitative pedaling exercises. The objectives of this work were to (i) determine whether patterns of muscle activity while pedaling in the recumbent and upright positions are similar when the different orientation in the gravity field is considered, (ii) compare the functional roles of the leg muscles while pedaling in the recumbent position to the upright position to the upright position and (iii) determine whether leg muscle onset and offset timing for recumbent and upright pedaling respond similarly to changes in pedaling rate. To fulfill these objectives, surface electromyograms were recorded from 10 muscles of 15 subjects who pedaled in both the recumbent and upright positions at 75, 90, and 105 rpm and at a constant workrate of 250 W. Patterns of muscle activation were compared over the crank cycle. Functional roles of muscles in recumbent and upright pedaling were compared using the percent of integrated activation in crank cycle regions determined previously for upright pedaling. Muscle onset and offset timing were also compared. When the crank cycle was adjusted for orientation in the gravity field, the activation patterns for the two positions were similar. Functional roles of the muscles in the two positions were similar as well. In recumbent pedaling, the uniarticular hip and knee extensors functioned primarily to produce power during the extension region of the crank cycle, whereas the biarticular muscles crossing the hip and knee functioned to propel the leg through the transition regions of the crank cycle. The adaptations of the muscles to changes in pedaling rate were also similar for the two body positions with the uniarticular power producing muscles of the hip and knee advancing their activity to earlier in the crank cycle as the pedaling rate increased. This information on the functional roles of the leg muscles provides a basis by which to form functional groups, such as power-producing muscles and transition muscles, to aid in the development of rehabilitative pedaling exercises and recumbent pedaling simulations to further our understanding of task-dependent muscle coordination.  相似文献   

4.
Previous studies have sought to improve cycling performance by altering various aspects of the pedaling motion using novel crank–pedal mechanisms and non-circular chainrings. However, most designs have been based on empirical data and very few have provided significant improvements in cycling performance. The purpose of this study was to use a theoretical framework that included a detailed musculoskeletal model driven by individual muscle actuators, forward dynamic simulations and design optimization to determine if cycling performance (i.e., maximal power output) could be improved by optimizing the chainring shape to maximize average crank power during isokinetic pedaling conditions. The optimization identified a consistent non-circular chainring shape at pedaling rates of 60, 90 and 120 rpm with an average eccentricity of 1.29 that increased crank power by an average of 2.9% compared to a conventional circular chainring. The increase in average crank power was the result of the optimal chainrings slowing down the crank velocity during the downstroke (power phase) to allow muscles to generate power longer and produce more external work. The data also showed that chainrings with higher eccentricity increased negative muscle work following the power phase due to muscle activation–deactivation dynamics. Thus, the chainring shape that maximized average crank power balanced these competing demands by providing enough eccentricity to increase the external work generated by muscles during the power phase while minimizing negative work during the subsequent recovery phase.  相似文献   

5.
Determinants of metabolic cost during submaximal cycling.   总被引:4,自引:0,他引:4  
The metabolic cost of producing submaximal cycling power has been reported to vary with pedaling rate. Pedaling rate, however, governs two physiological phenomena known to influence metabolic cost and efficiency: muscle shortening velocity and the frequency of muscle activation and relaxation. The purpose of this investigation was to determine the relative influence of those two phenomena on metabolic cost during submaximal cycling. Nine trained male cyclists performed submaximal cycling at power outputs intended to elicit 30, 60, and 90% of their individual lactate threshold at four pedaling rates (40, 60, 80, 100 rpm) with three different crank lengths (145, 170, and 195 mm). The combination of four pedaling rates and three crank lengths produced 12 pedal speeds ranging from 0.61 to 2.04 m/s. Metabolic cost was determined by indirect calorimetery, and power output and pedaling rate were recorded. A stepwise multiple linear regression procedure selected mechanical power output, pedal speed, and pedal speed squared as the main determinants of metabolic cost (R(2) = 0.99 +/- 0.01). Neither pedaling rate nor crank length significantly contributed to the regression model. The cost of unloaded cycling and delta efficiency were 150 metabolic watts and 24.7%, respectively, when data from all crank lengths and pedal speeds were included in a regression. Those values increased with increasing pedal speed and ranged from a low of 73 +/- 7 metabolic watts and 22.1 +/- 0.3% (145-mm cranks, 40 rpm) to a high of 297 +/- 23 metabolic watts and 26.6 +/- 0.7% (195-mm cranks, 100 rpm). These results suggest that mechanical power output and pedal speed, a marker for muscle shortening velocity, are the main determinants of metabolic cost during submaximal cycling, whereas pedaling rate (i.e., activation-relaxation rate) does not significantly contribute to metabolic cost.  相似文献   

6.
The effect of fatigue as a result of a standard submaximal dynamic exercise on maximal short-term power output generated at different contraction velocities was studied in humans. Six subjects performed 25-s maximal efforts on an isokinetic cycle ergometer at five different pedaling rates (60, 75, 90, 105, and 120 rpm). Measurements of maximal power output were made under control conditions [after 6 min of cycling at 30% maximal O2 uptake (VO2max)] and after fatiguing exercise that consisted of 6 min of cycling at 90% VO2max with a pedaling rate of 90 rpm. Compared with control values, maximal peak power measured after fatiguing exercise was significantly reduced by 23 +/- 19, 28 +/- 11, and 25 +/- 11% at pedaling rates of 90, 105, and 120 rpm, respectively. Reductions in maximum peak power of 11 +/- 8 and 14 +/- 8% at 60 and 75 rpm, respectively, were not significant. The rate of decline in peak power during the 25-s control measurement was least at 60 rpm (5.1 +/- 2.3 W/s) and greatest at 120 rpm (26.3 +/- 13.9 W/s). After fatiguing exercise, the rate of decline in peak power at pedaling rates of 105 and 120 rpm decreased significantly from 21.5 +/- 9.0 and 26.3 +/- 13.9 W/s to 10.0 +/- 7.3 and 13.3 +/- 6.9 W/s, respectively. These experiments indicate that fatigue induced by submaximal dynamic exercise results in a velocity-dependent effect on muscle power. It is suggested that the reduced maximal power at the higher velocities was due to a selective effect of fatigue on the faster fatigue-sensitive fibers of the active muscle mass.  相似文献   

7.
The objectives of this study were to (1) determine whether bilateral asymmetry in cycling changed systematically with pedaling rate, (2) determine whether the dominant leg as identified by kicking contributed more to average power over a crank cycle than the other leg, and (3) determine whether the dominant leg asymmetry changed systematically with pedaling rate. To achieve these objectives, data were collected from 11 subjects who pedaled at five different pedaling rates ranging from 60 to 120 rpm at a constant workrate of 260 W. Bilateral pedal dynamometers measured two orthogonal force components in the plane of the bicycle. From these measurements, asymmetry was quantified by three dependent variables, the percent differences in average positive power (%AP), average negative power (%AN), and average crank power (%AC). Differences were taken for two cases--with respect to the leg generating the greater total average for each power quantity at 60 rpm disregarding the measure of dominance, and with respect to the dominant leg as determined by kicking. Simple linear regression analyses were performed on these quantities both for the subject sample and for individual subjects. For the subject sample, only the percent difference in average negative power exhibited a significant linear relationship with pedaling rate; as pedaling rate increased, the asymmetry decreased. Although the kicking dominant leg contributed significantly greater average crank power than the non-dominant leg for the subject sample, the non-dominant leg contributed significantly greater average positive power and average negative power than the dominant leg. However, no significant linear relationships for any of these three quantities with pedaling rate were evident for the subject sample because of high variability in asymmetry among the subjects. For example, significant linear relationships existed between pedaling rates and percent difference in total average power per leg for only four of the 11 subjects and the nature of these relationships was different (e.g. positive versus negative slopes). It was concluded that pedaling asymmetry is highly variable among subjects and that individual subjects may exhibit different systematic changes in asymmetry with pedaling rate depending on the quantity of interest.  相似文献   

8.
The objective of this study was to evaluate the performance of different multivariate optimization algorithms by solving a "tracking" problem using a forward dynamic model of pedaling. The tracking problem was defined as solving for the muscle controls (muscle stimulation onset, offset, and magnitude) that minimized the error between experimentally collected kinetic and kinematic data and the simulation results of pedaling at 90 rpm and 250 W. Three different algorithms were evaluated: a downhill simplex method, a gradient-based sequential quadratic programming algorithm, and a simulated annealing global optimization routine. The results showed that the simulated annealing algorithm performed for superior to the conventional routines by converging more rapidly and avoiding local minima.  相似文献   

9.
Mathematical models of the muscle excitation are useful in forward dynamic simulations of human movement tasks. One objective was to demonstrate that sloped as opposed to rectangular excitation waveforms improve the accuracy of forward dynamic simulations. A second objective was to demonstrate the differences in simulated muscle forces using sloped versus rectangular waveforms. To fulfill these objectives, surface EMG signals from the triceps brachii and elbow joint angle were recorded and the intersegmental moment of the elbow joint was computed from 14 subjects who performed two cyclic elbow extension experiments at 200 and 300 deg/s. Additionally, the surface EMG signals from the leg musculature, joint angles, and pedal forces were recorded and joint intersegmental moments were computed during a more complex pedaling task (90 rpm at 250 W). Using forward dynamic simulations, four optimizations were performed in which the experimental intersegmental moment was tracked for the elbow extension tasks and four optimizations were performed in which the experimental pedal angle, pedal forces, and joint intersegmental moments were tracked for the pedaling task. In these optimizations the three parameters (onset and offset time, and peak excitation) defining the sloped (triangular, quadratic, and Hanning) and rectangular excitation waveforms were varied to minimize the difference between the simulated and experimentally tracked quantities. For the elbow extension task, the intersegmental elbow moment root mean squared error, onset timing error, and offset timing error were less from simulations using a sloped excitation waveform compared to a rectangular excitation waveform (p<0.001). The average and peak muscle forces were from 7% to 16% larger and 20-28% larger, respectively, when using a rectangular excitation waveform. The tracking error for pedaling also decreased when using a sloped excitation waveform, with the quadratic waveform generating the smallest tracking errors for both tasks. These results support the use of sloped over rectangular excitation waveforms to establish greater confidence in the results of forward dynamic simulations.  相似文献   

10.
The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at 90 rpm and sub-maximal power output. This finding might have important implications for preferred pedaling rate selection.  相似文献   

11.
Previous work had identified six biomechanical functions that need to be executed by each limb in order to produce a variety of pedaling tasks. The functions can be organized into three antagonistic pairs: an Ext/Flex pair that accelerates the foot into extension or flexion with respect to the pelvis, an Ant/Post pair that accelerates the foot anteriorly or posteriorly with respect to the pelvis, and a Plant/Dorsi pair that accelerates the foot into plantarflexion or dorsiflexion. Previous analyses of experimental data have inferred that muscles perform the same function during different pedaling tasks (e.g. forward versus backward pedaling) because the EMG timing was similar, but they did not present rigorous biomechanical analyses to assess whether a muscle performed the same biomechanical function, and if so, to what degree. Therefore, the objective of this study was to determine how individual muscles contribute to these biomechanical functions during two different motor tasks, forward and backward pedaling, through a theoretical analysis of experimental data. To achieve this objective, forward and backward pedaling simulations were generated and a mechanical energy analysis was used to examine how muscles generate, absorb or transfer energy to perform the pedaling tasks. The results showed that the muscles contributed to the same primary Biomechanical functions in both pedaling directions and that synergistic performance of certain functions effectively accelerated the crank. The gluteus maximus worked synergistically with the soleus, the hip flexors worked synergistically with the tibialis anterior, and the vasti and hamstrings functioned independently to accelerate the crank. The rectus femoris used complex biomechanical mechanisms including negative muscle work to accelerate the crank. The negative muscle work was used to transfer energy generated elsewhere (primarily from other muscles) to the pedal reaction force in order to accelerate the crank. Consistent with experimental data, a phase shift was required from those muscles contributing to the Ant/Post functions as a result of the different limb kinematics between forward and backward pedaling, although they performed the same biomechanical function. The pedaling simulations proved necessary to interpret the experimental data and identify motor control mechanisms used to accomplish specific motor tasks, as the mechanisms were often complex and not always intuitively obvious.  相似文献   

12.
The objective of this study was to identify whether muscle mechanoreceptor stimulation is capable of modulating sweat rate. Seven healthy subjects performed two 20-min bouts of supine exercise on a tandem cycle ergometer (60 rpm at 65% of maximal heart rate). After one bout, the subject stopped exercising (i.e., no pedaling), whereas, after the other bout, the subject's legs were passively cycled (at 60 rpm) via a second person cycling the tandem ergometer. This allows for mechanical stimulation of muscle with minimal activation of central command. Esophageal temperature (T(es)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure, oxygen consumption, cutaneous vascular conductance (CVC), and sweat rate were not different during the two exercise bouts. Regardless of the mode of exercise recovery, there were no differences in T(es), T(sk), or CVC. In contrast, early in the recovery period, chest and forearm sweat rate were significantly greater in the passive cycling recovery mode relative to the no-pedaling condition (chest: 0.57 +/- 0.13 vs. 0.39 +/- 0.14, forearm: 0.30 +/- 0.05 vs. 0.12 +/- 0.02 mg.cm(-2).min(-1); both P < 0.05). These results suggested that muscle mechanoreceptor stimulation to the previously activated muscle is capable of modulating sweat rate.  相似文献   

13.
Despite the wide use of surface electromyography (EMG) recorded during dynamic exercises, the reproducibility of EMG variables has not been fully established in a course of a dynamic leg exercise. The aim of this study was to investigate the reproducibility of eight lower limb muscles activity level during a pedaling exercise performed until exhaustion. Eight male were tested on two days held three days apart. Surface EMG was recorded from vastus lateralis, rectus femoris (RF), vastus medialis, semimembranosus, biceps femoris, gastrocnemius lateral, gastrocnemius medianus and tibialis anterior during incremental exercise test. The root mean square, an index of global EMG activity, was averaged every five crank revolutions (corresponding to about 3 s at 85 rpm) throughout the tests. Despite inter-subjects variations, we showed a high reproducibility of the activity level of lower limb muscles during a progressive pedaling exercise performed until exhaustion. However, RF muscle seemed to be the less reproducible of the eight muscles investigated during incremental pedaling exercise. These results suggest that each subject adopt a personal muscle activation strategy in a course of an incremental cycling exercise but fatigue phenomenon can induce some variations in the most fatigable muscles (RF).  相似文献   

14.
Eight experienced male cyclists (C), eight well-trained male runners (R), and eight less-trained male noncyclists (LT) were tested under multiple cadence and power output conditions to determine: (1) if the cadence at which lower extremity net joint moments are minimized (cost function cadence) was associated with preferred pedaling cadence (PC), (2) if the cost function cadence increased with increases in power output, and (3) if the association is generalizable across groups differing in cycling experience and aerobic power. Net joint moments at the hip, knee, and ankle were computed from video records and pedal reaction force data using 2-D inverse dynamics. The sum of the average absolute hip, knee, and ankle joint moments defined a cost function at each power output and cadence and provided the basis for prediction of the cadence which minimized net joint moments for each subject at each power output. The cost function cadence was not statistically different from the PC at each power output in all groups. As power output increased, however, the cost function cadence increased for all three subject groups (86 rpm at 100 W, 93 rpm at 150 W, 98 rpm at 200 W, and 96 rpm at 250 W). PC showed little change (R) or a modest decline (C, LT) with increasing power output. Based upon the similarity in the mean data but different trends in the cost function cadence and PC in response to changes in power output as well as the lack of significant correlations between these two variables, it was concluded that minimiking net joint moments is a factor modestly associated with preferred cadence selection.  相似文献   

15.
Nine male subjects performed continuous incremental exercise on a bicycle ergometer pedaling at 50 and 90 rpm in a normal glycogen state (NG) and at 50 rpm in a glycogen-depleted state (GD) to determine if alterations in pedaling frequency and muscle glycogen content would affect their "anaerobic thresholds." Ventilatory [T(vent)] and lactate [T(lac)] thresholds were identified as the points after which expired minute volume and blood lactate began to increase nonlinearly as a function of work rate. The GD protocol elicited a significant divergence between the two thresholds shifting the T(vent) to a lesser and the T(lac) to a greater work rate relative to the NG state. When the pedaling frequency was increased to 90 rpm in the NG condition, the T(lac) was shifted to a lesser work rate relative to the 50-rpm NG condition. A correlation of only 0.71 was obtained between subjects' T(vent) and T(lac). In subjects of less than 70 kg body wt, the T(lac) came at a work rate 400 kg.m.min-1 less than in subjects of greater than 80 kg body wt despite equivalent O2 uptake. The observation that the T(vent) and T(lac) could be manipulated independently of each other reveals limitations in using the T(vent) to estimate the so-called anaerobic threshold.  相似文献   

16.
During exhaustive incremental pedaling exercises, root mean square or amplitude of integrated electromyographic values exhibits a nonlinear increase, i.e., the so-called electromyographic threshold (EMG(Th)). As proposed by various authors, this EMG(Th) could be used as a complementary indicator of the aerobic-anaerobic transition in physiological evaluations. However, most of these studies used visual detection for the EMG(Th) and to date no previous study has shown the reliability of this type of EMG(Th) detection. We aimed to compare a visual and a mathematical method for EMG(Th) detection in each of 8 lower limb muscles during incremental cycling exercise. Our results showed an overestimation in the number of cases in which EMG(Th) was detected when using visual inspection (n = 45) compared with the mathematical method (n = 32). However, no significant differences were observed between the 2 methods concerning the power output at which EMG(Th) occurred. These results suggest that EMG(Th) should be mathematically detected. In this context, coaches can easily perform such measurements in order to evaluate the impact of their training programs on the neuromuscular adaptations of their athletes. For example, an automatic mathematical detection of EMG(Th) could be performed during a pedaling exercise in order to detect neuromuscular fatigue. Furthermore, this index could be used during test or training sessions performed either in a lab or in ecological situations. Moreover, the use of EMG(Th) to predict ventilatory threshold occurrence could be an interesting tool for trainers who cannot use the very expensive devices needed to analyze respiratory gas exchanges.  相似文献   

17.
The purpose of the present study was to examine theneuromuscular modifications of cyclists to changes in grade andposture. Eight subjects were tested on a computerized ergometer underthree conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surfaceelectromyography (EMG) of six lower extremity muscles. Results showedthat rectus femoris, gluteus maximus (GM), and tibialis anterior hadgreater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of thecrank cycle in the ST condition. The muscle activities of gastrocnemiusand biceps femoris did not exhibit profound differences amongconditions. Overall, the change of cycling grade alone from 0 to 8%did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphillgrade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patternswere discussed with respect to lower extremity joint moments.Monoarticular extensor muscles (GM, vastus lateralis) demonstratedgreater modifications in activity patterns with the change in posturecompared with their biarticular counterparts. Furthermore, musclecoordination among antagonist pairs of mono- and biarticular muscleswas altered in the ST condition; this finding provides support for thenotion that muscles within these antagonist pairs have differentfunctions.

  相似文献   

18.
The aim of this study was to compare optimal pedalling velocities during maximal (OVM) and submaximal (OVSM) cycling in human, subjects with different training backgrounds. A group of 22 subjects [6 explosive (EX), 6 endurance (EN) and 10 non-specialised subjects] sprint cycled on a friction-loaded ergometer four maximal sprints lasting 6 s each followed by five 3-min periods of steady-state cycling at 150 W with pedalling frequencies varying from 40 to 120 rpm. The OVM and OVSM were defined as the velocities corresponding to the maximal power production and the lowest oxygen consumption, respectively. A significant linear relationship (r2 = 0.52, P < 0.001) was found between individual OVM [mean 123.1 (SD 11.2) rpm] and OVSM [mean 57.0 (SD 4.9) rpm, P < 0.001] values, suggesting that the same functional properties of leg extensor muscles influence both OVM and OVSM. Since EX was greater than EN in both OVM and OVSM (134.3 compared to 110.9 rpm and 60.8 compared to 54.0 rpm, P < 0.01 and P < 0.05, respectively) it could be hypothesised that the distribution of muscle fibre type plays an important role in optimising both maximal and submaximal cycling performance.  相似文献   

19.
The purpose of this study was to propose a new method that can be used to calculate electromechanical delay (EMD) without the measurement of forces. A secondary purpose, as an example of the importance of measuring EMD, was to predict muscle force development events based on the EMG activity of selected muscles during cycling at different pedaling frequencies. EMD was estimated using newly derived equations based on activation dynamics hypothesis. Tibialis anterior (TA) and soleus (SL) muscles of 16 male participants were studied while subjects pedaled at targeted cadences of 60, 80, and 100 revolutions per minute. The estimated EMDs of TA and SL were significantly different from each other with means of 68.1 and 88.7 ms, respectively. The average crank angle for the initiation and time to peak TA contraction was estimated at 75±35° and 26±15° before the crank reached top-dead-center (TDC), while the contraction ended at 31±19° after the TDC on average. The projected starting, peak and end angles of SL contraction activity were 45±18°, 123±13°, and 218±35° after the TDC, respectively. There was no difference among different pedaling cadences observed for these mechanical events. The proposed method was proven to be effective in studying EMD and estimate muscle contraction patterns during cycling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号