首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
We have examined the functional property of murine CD2 as an intercellular adhesion molecule by using five anti-murine CD2 mAb which were classified into two groups according to their mutual competition in binding to cell surface CD2. Hamster fibroblasts transfected with murine CD2 cDNA exhibited increased conjugate formation with a murine mastocytoma P815 which expresses the putative murine LFA-3 mRNA detected by cross-hybridization with human LFA-3 cDNA under conditions of low stringency. This increase in conjugate formation was abrogated by both groups of anti-CD2 mAb, although some differences in the extent of inhibition were observed at lower concentrations of the mAb. We then examined the involvement of CD2 in several murine T cell responses by using these mAb to abrogate CD2-mediated cellular interactions. Anti-CD2 mAb significantly inhibited mitogenic T cell responses induced by suboptimal doses of Con A and PHA. In the allogenic MLR response and in the Ag response of two KLH/I-Ak-specific Th cell clones, the inhibitory effect of anti-CD2 mAb was also greatest under suboptimal conditions, i.e., with lesser doses of the Ag. These results indicate that the contribution of CD2 as an accessory molecule is variable, depending on the Ag dose used for stimulation, and they suggest that CD2 is involved in the Ag response of murine T cells under the physiologic conditions where only a limited amount of Ag is available. We next examined the contribution of CD2 to MHC-restricted cytotoxicity by CTL and to MHC-unrestricted cytotoxicity by NK and lymphokine-activated killer cells. Only a marginal inhibition by anti-CD2 mAb alone was observed. Anti-lymphocyte function-associated Ag (LFA)-1 mAb alone exhibited greater inhibitory effects than anti-CD2 mAb in all of the cases tested. In most cases, however, substantial levels of cytotoxicity remained, even in the presence of both anti-CD2 and anti-LFA-1 mAb. These results indicate a minor contribution of CD2, as compared with LFA-1, to cytotoxicity by murine CTL, NK cells, and lymphokine-activated killer cells, and they reveal the presence of undefined cellular interaction pathways other than those mediated by CD2 and LFA-1.  相似文献   

2.
Proliferative T cell responses were elicited in a comitogenic assay when purified mAb against CD 18, CD11a, LFA-3, and CD7 were immobilized onto solid plastic surfaces together with submitogenic doses of mAb against the CD3 complex. The proliferative response was associated to the production of IL-2 and to the expression of IL-2R. We explored the possibility that a second signal provided by either PMA or a Ca2+ ionofore could replace the anti-CD3 mAb in the comitogenic assay. Interestingly, our data clearly indicate that PMA but not the ionofore was capable of mediating the co-mitogenic effect in conjunction with solid-bound mAb (CDw18, CD11a, LFA-3, and CD7). We also demonstrate that the mAb (anti-CD4 and anti-CD2) which have been previously described as co-mitogenic in combination with anti-CD3 are capable of eliciting this activating signal in the presence of PMA. These data indicate that mAb to certain cell surface differentiation Ag that in soluble form inhibit T cell function such as LFA-1, LFA-3, and CD2 can under appropriate conditions induce co-mitogenic signals on T cells. Our results support the hypothesis that several cell surface differentiation Ag may participate in conjunction with the T3-Ti complex in the transmembrane signal transduction leading to T cell activation.  相似文献   

3.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

4.
Defining the cellular and molecular mechanisms of interaction of developing thymocytes with nonlymphoid cells of the thymic microenvironment is critical for understanding normal thymus function. We have previously shown that the CD2/LFA-3 adhesion pathway is important in the interaction of thymocytes with a variety of LFA-3+ nonlymphoid thymic microenvironment cell types. Moreover, T cell activation via the CD2 (alternative, Ag independent) pathway is considered an important mechanism for intrathymic T cell proliferation. To study the relevance of CD2/LFA-3 interactions to human thymocyte activation, we have used purified LFA-3 Ag in several in vitro assays of thymocyte proliferation. Whereas LFA-3 Ag alone did not induce thymocyte proliferation, LFA-3 Ag in combination with the anti-CD2 antibody, CD2.1, and rIL-2 induced marked thymocyte proliferation. Additionally, the anti-CD28 antibody, Kolt2, could substitute for rIL-2, resulting in thymocyte activation induced by LFA-3 Ag in combination with antibodies CD2.1 and Kolt2. In both triggering systems, LFA-3 induced thymocyte activation was dependent upon the concentration of LFA-3 Ag. LFA-3 Ag-dependent thymocyte activation was directed primarily toward CD1-, mature thymocytes. Finally, intact SRBC that express the sheep homolog of LFA-3, T11TS, in combination with antibody CD2.1 and rIL-2 could also induce thymocyte activation. These data suggest that interaction of LFA-3 molecules with thymocyte CD2 molecules may provide a component of the stimulus for normal intrathymic thymocyte activation leading to thymocyte proliferation.  相似文献   

5.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

6.
Complete T cell activation requires not only a first signal via TCR/CD3 engagement but also a costimulatory signal through accessory receptors such as CD2, CD28, or integrins. Focal adhesion kinase, pp125(FAK) (FAK), was previously shown to be localized in focal adhesions in fibroblasts and to be involved in integrin-mediated cellular activation. Although signaling through beta1- or beta3-integrins induces tyrosine phosphorylation of FAK, there has been no evidence that activation of T cells through the beta2-integrin, LFA-1, involves FAK. We report here that crosslinking of LFA-1 induces tyrosine phosphorylation of FAK in PHA-activated T cells. Moreover, cocrosslinking with anti-LFA-1 mAb and suboptimal concentration of anti-CD3 mAb markedly increases tyrosine phosphorylation of FAK in an antibody-concentration-dependent and time-kinetics-dependent manner compared with stimulation through CD3 alone, which correlates well with enhanced proliferation of PHA-activated T cells. Furthermore, LFA-1beta costimulation with CD3 induces tyrosine phosphorylation of Syk associated with FAK. These results indicate, for the first time, that signals mediated by LFA-1 can regulate FAK, suggesting that LFA-1-mediated T cell costimulation may be involved in T cell activation at least partially through FAK.  相似文献   

7.
The T cell Ag receptor (CD3/Ti) and the sheep E receptor (CD2) expressed on the surface of human T cells are both capable of initiating intracellular signals necessary for T cell activation. CD3/Ti interacts with Ag to initiate cellular immune responses. Although the exact function of CD2 is unknown, lymphocyte function-associated Ag 3 (LFA-3), a 55- to 70-kDa receptor expressed on a broad spectrum of hemopoietic and nonhemopoietic cells, has recently been shown to be its natural ligand. We show here that although purified multimeric LFA-3 is not capable of initiating transmembrane signaling events on its own, the combination of LFA-3 and the anti-CD2 mAb CD2.1 induces intracellular calcium increases, phosphatidylinositol second messenger generation and lymphokine secretion in the T cell leukemic line Jurkat. In order to study the signaling requirements of CD2, we compared the ability of CD2 mAb and LFA-3 to initiate activation signals in Jurkat and in three Jurkat-derived mutants. A CD3-CD2+ mutant failed to increase calcium or exhibit phosphatidylinositol hydrolysis to either the combination of agonist CD2 mAb 9-1 and 9.6 or LFA-3 and CD2.1. Reconstitution of the Ag receptor by transfection of the Ti-beta-chain restored the expression of the CD3/Ti complex and the ability to respond to either combination of CD2 ligands. However, no response to CD2 ligands was detected in a CD3+CD2+ mutant selected for signaling defects to CD3/Ti ligands. Complementation of the CD3/Ti signaling defect by cell fusion also restored competency to respond to CD2 agonists. These results demonstrate that LFA-3 under appropriate conditions can activate T cells via the CD2 complex and that this activation requires not only the cell surface expression of the CD3/Ti complex but also a functional Ag receptor pathway.  相似文献   

8.
LFA-1, a member of the integrin family of molecules, is involved in mediating cellular adhesion in all phases of the immune response, playing a role in the interaction of helper T cells as well as in killing of target cells by both cytotoxic T cells and natural killer cells. We have developed a monoclonal antibody, anti-HVS6B6, which recognizes a functionally unique epitope of the LFA-1 molecule. Although this mAb itself was not mitogenic against T cells, it induced a strong proliferative response when added to T cells with submitogenic concentrations of anti-CD2 (anti-T11(2) and anti-T11(3)) mAbs. In contrast, other anti-LFA-1 mAbs (CD11a and CD18) suppressed this anti-CD2 mAb-induced T cell proliferation. Kinetic studies showed that anti-HVS6B6 acts on an early event in CD2-mediated T cell activation. Although T11(3)-epitope expression induced by anti-T11(2) mAb was not affected by treatment of cells with anti-HVS6B6, both Ca2+ influx and phosphatidylinositol turnover induced by anti-CD2 mAbs were markedly enhanced by the pretreatment of T cells with anti-HVS6B6 mAb. These results indicate that the LFA-1 mediating signal contributes to a very early phase of signal transduction during CD2-mediated T cell activation.  相似文献   

9.
To define epitopes on the CD2 (T11, the T cell erythrocyte receptor) molecule that are necessary for interaction with lymphocyte function-associated Ag-3 (LFA-3), we have expressed the human wild-type CD2 cDNA and mutant CD2 cDNA in a murine Ag-specific T cell hybridoma that responds to human HLA-DR Ag. Here we have expressed mutations at amino acid 91 and 92 of CD2 in the T cell hybridoma. The mutated CD2 molecules were functional in that pairs of anti-CD2 mAb that continued to bind were able to stimulate IL-2 production by the hybridomas. However, CD2 mutants with either the 91 or 92 amino acid substitution had lost the ability to bind to or be activated by either SRBC, which bear an LFA-3 homologue, or by murine L cells expressing human LFA-3. Unlike hybridomas expressing the wild-type CD2 molecule, there was no enhanced response to Ag stimulation. Taken together, these data suggest that the mutated CD2 molecules were no longer able to bind to, or to utilize, LFA-3 for activation. We have previously demonstrated that a mutation at amino acid 51 of CD2 results in loss of binding to LFA-3. Whether these two regions of CD2, discrete and separable by amino acid sequence, form one or more binding sites for LFA-3 remains to be determined.  相似文献   

10.
Differential activation requirements for virgin and memory T cells   总被引:28,自引:0,他引:28  
Most studies of the activation requirements for T cells have used either T cell lines or populations of normal T cells that consist of a mixture of virgin and Ag-primed T cells. These two subpopulations of T cells can now be distinguished in humans by their reactivity with mAb. The anti-CD45R antibody HB10 identifies virgin T cells (T degrees) that are non-reactive to recall Ag and relatively poor at providing help for B cell differentiation. Conversely, memory T cells (T') that can react to recall Ag and enhance Ig production are non-reactive with anti-CD45R, but can be identified with the UCHL1 antibody. We have used these antibodies to separate the T degrees and T' populations and examine their activation requirements. On activation CD45R+ cells rapidly began to lose the CD45R Ag and express the UCHL1 Ag in increased amounts, whereas the UCHL1+ cells retained this phenotype. Both populations responded to PHA in the presence of monocytes, but when triggered by an antibody to CD3 only the T' cells were induced to express IL-2R, produce IL-2, and to proliferate. The T degrees population of cells remained relatively quiescent by all of these parameters. However, anti-CD3 stimulation conditioned the T degrees cells for IL-2 responsiveness, inasmuch as the addition of rIL-2 resulted in significant IL-2R expression and proliferation. When the CD4+ T degrees and CD4+ T' subpopulations were isolated and examined in the same assays similar results were obtained. The data indicate that fundamental differences exist in the triggering requirements for T degrees and T' cells.  相似文献   

11.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in the suppression of human B cell function by immobilized anti-CD3-activated CD4+ T cells was examined by studying the effects of mAb to these determinants. The suppressive activity was assessed by the effects of CD4+ T cells without mitomycin C treatment activated by immobilized anti-CD3 for 72 hr on the differentiation into Ig-secreting cells of B cells activated for 72 hr with immobilized anti-CD3-stimulated CD4+ T cells that had been treated with mitomycin C (T4 mito). Suppression was not observed when activated CD4+ T cells and B cells were separated by filter membranes, indicating that the suppression requires the direct interactions between anti-CD3-activated CD4+ T cells and activated B cells. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) reversed the suppression of B cell function by suppressor CD4+ T cells significantly. Reversal of suppression of B cell function was most marked when activated B cells were treated with mAb to ICAM-1 and suppressor CD4+ T cells were treated with mAb to LFA-1, but not vice versa. Studies using fluorescence-activated cell sorter revealed marked increase of expression of ICAM-1 on B cells after 72 hr of activation with immobilized anti-CD3-stimulated T4 mito. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the suppressive activity of anti-CD3-activated CD4+ T cells to B cells. Moreover, the data are consistent with a model of T-cell-mediated B cell suppression in which interactions between LFA-1 on suppressor T cells and ICAM-1 on activated B cells play a central role in the suppression of B cell function.  相似文献   

12.
13.
CD2 (T11, the T cell E receptor), a nonpolymorphic 47- to 55-kDa glycoprotein, is a T cell-specific surface protein that plays an important role in T lymphocyte adhesion, signal transduction, and differentiation. A natural ligand of CD2 is lymphocyte function associated Ag-3 (LFA-3 (CD58)), a widely expressed glycoprotein of 50 to 70 kDa. The physiologic interaction of CD2 with LFA-3 functions to increase intercellular adhesion and plays a role in T cell activation. This interaction, however, in the absence of other stimuli, has not previously been shown to induce intracellular signals such as Ca2+ mobilization or IL-2 production. To investigate whether cAMP may play a role in ligand-triggered CD2-mediated signal transduction, we have studied the ability of purified LFA-3 and anti-CD2 mAb to induce changes in intracellular cAMP content in murine Ag-specific T cell hybridomas that stably express wild-type and mutated human CD2 molecules. By using a RIA sensitive to the femtomolar range and specific for cAMP, we demonstrate that purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3, like anti-CD2 mAb, is capable of inducing marked, transient increases in the intracellular concentration of cAMP. Presentation of purified LFA-3 alone to CD2-expressing hybridoma cells, however, did not stimulate phosphatidylinositol turnover nor IL-2 production. The cytoplasmic domain of CD2 is necessary for these ligand-induced cAMP changes, demonstrating that LFA-3 binding to CD2 transduces a signal to the cell. Experiments using the phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine showed that CD2-mediated regulation of cAMP levels occurs primarily by the stimulation of cAMP production rather than by the inhibition of cAMP degradation. These results demonstrate that the interaction of LFA-3 with CD2, in the absence of other stimuli, is capable of initiating intracellular biochemical changes and suggest that CD2/LFA-3 interactions may regulate T cell function at least in part through the generation of intracellular cAMP.  相似文献   

14.
We have recently developed a mAb, anti-1F7, which defines a family of structures found to include the molecule recognized by anti-Ta1 (CD26). In this paper, we demonstrated that binding of 1F7 by solid-phase immobilized anti-1F7 mAb but not anti-Ta1 mAb has a comitogenic effect by inducing proliferation of human CD4+ T lymphocytes in conjunction with submitogenic doses of anti-CD3 or anti-CD2. The proliferative response induced via the CD3-1F7 or CD2-1F7 pathways is associated with the IL-2 autocrine pathway, including IL-2 production. IL-2R expression and anti-IL-2R (Tac) inhibition. Furthermore, solid-phase immobilization of anti-1F7 but not anti-Ta1 acts in conjunction with submitogenic doses of PMA to mediate a comitogenic effect in the absence of anti-CD3 or anti-CD2, leading to CD4+ T cell proliferation. PMA treatment, in the meantime, leads to enhanced expression of 1F7 on the T cell surface. Despite its functional association with both pathways of activation, however, the 1F7 structure is not comodulated with the CD3/TCR complex nor the CD2 molecule. These findings thus suggest that the CD26 Ag is involved in CD3 and CD2-induced human CD4+ T cell activation.  相似文献   

15.
CD2 (T11, the T cell erythrocyte receptor or the SRBC receptor), a nonpolymorphic 47- to 55-kDa glycoprotein, appears to play a role in T lymphocyte adhesion, signal transduction, and differentiation. Pairs of anti-CD2 mAb induce T cell proliferation, suggesting that CD2 may be an Ag-independent pathway of T cell activation. We have expressed the human CD2 and a number of cytoplasmic domain deletion mutants of CD2 in an Ag-reactive murine hybridoma. We have previously shown that a cytoplasmic domain deletion mutant, CD2 delta B, in which the carboxyl-terminal 100 amino acids have been deleted, is no longer capable of signaling through CD2. Here we have expressed a second cytoplasmic domain deletion mutant, CD2 delta S, in which the terminal 41 amino acids have been removed, including the region with greatest conservation between the mouse, rat, and human species. CD2 delta S+ hybridomas were able to respond to Ag and to LFA-3 plus an anti-CD2 mAb. Although the CD2 delta S+ hybridomas responded comparably to the wild-type CD2+ hybridomas to certain pairs of anti-CD2 mAb (e.g., MT110 + 9-1 mAb), these CD2 delta S+ hybridomas were markedly deficient in their ability to respond to other pairs of stimulatory anti-CD2 mAb (e.g., 9.6 + 9-1 mAb). These data suggest that the cytoplasmic domain may have several functional regions, as partial deletions of the cytoplasmic domain appear to result in partial defects in signal transduction.  相似文献   

16.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

17.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

18.
Studies of cell-surface molecules involved in human T cell interaction reveal that differential expression of each of three adhesion molecules (LFA-3, CD2, and LFA-1) subdivides human peripheral blood T cells into major subpopulations. Systematic analysis of the relationship between expression of these and other markers of T cell subsets demonstrates a single major subset of human peripheral blood T lymphocytes distinguished by enhanced expression of LFA-3, CD2, LFA-1, and three other markers (CDw29 [4B4], UCHL1, and Pgp-1). Large differences in relative expression are observed for UCHL1 (29-fold) and LFA-3 (greater than 8-fold), and smaller differences (2- to 4-fold) are seen for CDw29, CD2, LFA-1, and Pgp-1. Bimodal distribution of LFA-3 is found on both CD4+ cells and on CD8+ cells as well as on B lymphocytes (CD19+). Neonatal T cells (CD3+) are comprised almost exclusively of the subset expressing low LFA-3, CD2, LFA-1, CDw29, and UCHL1. Activation of cord peripheral blood mononuclear leukocytes with PHA leads to uniform enhanced expression of each of these molecules on CD3+ cells. Functional analyses of these T cell subsets were performed after sorting of adult T cells based on differential LFA-3 expression. Only the LFA-3+ subset proliferated in response to the Ag tetanus toxoid, even though the LFA-3- subset proliferated more strongly to PHA. Furthermore, the LFA-3+ subset made greater than fivefold more IFN-gamma than the LFA-3- subset in response to PHA, despite the fact that both subsets made equivalent amounts of IL-2. This phenotypic and functional analysis of resting and activated newborn and adult T cells indicates that human memory T cells express enhanced levels of LFA-3, CD2, LFA-1, UCHL1, CDw29, and Pgp-1; we speculate that the increase in expression of T cell adhesion molecules LFA-3, CD2, and LFA-1 on memory cells is functionally important in their enhanced responsiveness.  相似文献   

19.
The majority of peripheral CD4+ T lymphocytes proliferate in vitro in response to anti-CD3 in presence of autologous APC. The present study describes a subpopulation of CD4+ T cells that cannot be activated and progress into cell cycle by stimulation with anti-CD3 plus APC or with mitogenic combinations of anti-CD2. The in vitro responses of these anti-CD3-unresponsive CD4+ T cells were investigated with a panel of mAb to CD2, CD3, and CD28, and found to be similar to those previously observed for mature thymocytes: only the combination of anti-CD2 plus anti-CD28 produced cell proliferation. Anti-CD3-unresponsive T cells were CD45RA+, but represented only 14 to 22% of the CD4+, CD45RA+ T cell population. Activation with anti-CD2 plus anti-CD28 mAb resulted in major changes in the cell surface phenotype and functional properties: a loss of CD45RA+ occurred and an increased expression of CD45RO, CD29, and CD58 (LFA3), as well as a gain in responsiveness to anti-CD3 and anti-CD2. This change in CD45 phenotype from CD45RA to CD45RO occurs in both the anti-CD3-responsive and in the anti-CD3-unresponsive subsets of the CD45RA+, CD4+ cells after cell proliferation. The anti-CD3-unresponsive subset may represent a pool of not yet fully differentiated peripheral T cells. The acquisition of anti-CD3 responsiveness could occur as a consequence of Ag priming or by an Ag-independent mechanism. Involvement of the CD28 Ag in this process is suggested from the present study.  相似文献   

20.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号