首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
An enzyme assay was developed to determine the activities of methyl chloride dehalogenase and O-demethylase of the homoacetogen strain MC. The formation of methyl tetrahydrofolate from tetrahydrofolate and methyl chloride or from tetrahydrofolate and vanillate was coupled to the oxidation of methyl tetrahydrofolate to methylene tetrahydrofolate mediated by methylene tetrahydrofolate reductase purified from Peptostreptococcus productus (strain Marburg) and to the subsequent oxidation of methylene tetrahydrofolate to methenyl tetrahydrofolate catalyzed by methylene tetrahydrofolate dehydrogenase purified from the same organism. To drive the endergonic methyl tetrahydrofolate oxidation with NAD+ as an electron acceptor, the NADH formed in this reaction was reoxidized in the exergonic lactate dehydrogenase reaction. The formation of NADPH and methenyl tetrahydrofolate in the methylene tetrahydrofolate dehydrogenase reaction was followed photometrically at 350 nm; ε350 was about 29.5 mM–1cm–1 (pH 6.5). Using the coupled enzyme assay, the cofactor requirements, the apparent kinetic parameters, the pH and temperature optima of both enzymes, and the effect of inhibitors were determined. The activity of methyl chloride dehalogenase and of O-demethylase was dependent on the presence of ATP; arsenate severely inhibited both enzyme activities in the absence of ATP. The coupled enzyme assay described allows purification and characterization of methyl chloride dehalogenase and O-demethylase and is also appropriate for the enzymatic determination of methyl tetrahydrofolate. Received: 2 August 1995 / Accepted: 28 September 1995  相似文献   

2.
From sludge obtained from the sewage digester plant in Stuttgart-Möhringen a strictly anaerobic bacterium was enriched and isolated with methyl chloride as the energy source. The isolate, which was tentatively called strain MC, was nonmotile, gram-positive, and occurred as elongated cocci arranged in chains. Cells of strain MC formed about 3 mol of acetate per 4 mol of CH3Cl consumed, indicating that the organism was a homoacetogenic bacterium fermenting methyl chloride plus CO2 according to: The organism grew with 2–3% methyl chloride in the gas phase at a doubling time of near 30 h. Dichloromethane was not utilized. The bacterium also grew on carbon monoxide, H2 plus CO2, and methoxylated aromatic compounds. Optimal growth with methyl chloride was observed at 25°C and pH 7.3–7.7. The G+C-content of the DNA was 47.5±1.5%. The methyl chloride conversion appeared to be inducible, since H2 plus CO2-grown cells lacked this ability. From the morphological and physiological characteristics, the isolate could not be affiliated to a known species.  相似文献   

3.
Tetrachloroethene metabolism of Dehalospirillum multivorans   总被引:4,自引:0,他引:4  
Dehalospirillum multivorans is a strictly anaerobic bacterium that is able to dechlorinate tetrachloroethene (perchloroethylene; PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (DCE) as part of its energy metabolism. The present communication describes some features of the dechlorination reaction in growing cultures, cell suspensions, and cell extracts of D. multivorans. Cell suspensions catalyzed the reductive dechlorination of PCE with pyruvate as electron donor at specific rates of up to 150 nmol (chloride released) min-1 (mg cell protein)-1 (300 M PCE initially, pH 7.5, 25°C). The rate of dechlorination depended on the PCE concentration; concentrations higher than 300 M inhibited dehalogenation. The temperature optimum was between 25 and 30°C; the pH optimum at about 7.5. Dehalogenation was sensitive to potential alternative electron acceptors such as fumarate or sulfur; nitrate or sulfate had no significant effect on PCE reduction. Propyl iodide (50 M) almost completely inhibited the dehalogenation of PCE in cell suspensions. Cell extracts mediated the dehalogenation of PCE and of TCE with reduced methyl viologen as the electron donor at specific rates of up to 0.5 mol (chloride released) min-1 (mg protein).-1 An abiotic reductive dehalogenation could be excluded since cell extracts heated for 10 min at 95°C were inactive. The PCE dehalogenase was recovered in the soluble cell fraction after ultracentrifugation. The enzyme was not inactivated by oxygen.Abbreviations PCE Perchloroethylene or tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - CHC Chlorinated hydrocarbon - MV Methyl viologen  相似文献   

4.
Biochemical studies on anaerobic phenylme-thylether cleavage by homoacetogenic bacteria have been hampered so far by the complexity of the reaction chain involving methyl transfer to acetyl-CoA synthase and subsequent methyl group carbonylation to acetyl-CoA. Strain TMBS 4 differs from other demethylating homoacetogenic bacteria in using sulfide as a methyl acceptor, thereby forming methanethiol and dimethylsulfide. Growing and resting cells of strain TMBS 4 used alternatitively CO2 as a precursor of the methyl acceptor CO for homoacetogenic acetate formation. Demethylation was inhibited by propyl iodide and reactivated by light, indicating involvement of a corrinoid-dependent methyltransferase. Strain TMBS 4 contained ca. 750 nmol g dry mass-1 of a corrinoid tentatively identified as 5-hydroxybenzimidazolyl cobamide. A photometric assay for measuring the demethylation activity in cell extracts was developed based on the formation of a yellow complex of Ti3+ with 5-hydroxyvanillate produced from syringate by demethylation. In cell extracts, the methyltransfer reaction from methoxylated aromatic compounds to sulfide or methanethiol depended on reductive activation by Ti3+. ATP and Mg2+ together greatly stimulated this reductive activation without being necessary for the demethylation reaction itself. The specific activity of the transmethylating enzyme system increased proportionally with protein concentration up to 3 mg ml-1 reaching a constant level of 20 nmol min-1 mg-1 at protein concentrations 10 mg ml-1. The specific rate of activation increased in a non-linear manner with protein concentration. Strain TMBS 4 degraded gallate, the product of sequential demethylations, to 3 acetate through the phloroglucinol pathway as found earlier with Pelobacter acidigallici.Abbreviations BV benzyl viologen - CTAB cetyltrimethylammonium bromide - H4folate tetrahydrofolate - MOPS 3-[N-morpholino]propanesulfonic acid - MV methyl viologen - NTA nitrilotriacetate - td doubling time - TMB 3,4,5-trimethoxybenzoate  相似文献   

5.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

6.
The Arctic tundra has been shown to be a potentially significant regional sink for methyl chloride (CH3Cl) and methyl bromide (CH3Br), although prior field studies were spatially and temporally limited, and did not include gross flux measurements. Here we compare net and gross CH3Cl and CH3Br fluxes in the northern coastal plain and continental interior. As expected, both regions were net sinks for CH3Cl and CH3Br. Gross uptake rates (−793 nmol CH3Cl m−2 day−1 and −20.3 nmol CH3Br m−2 day−1) were 20–240% greater than net fluxes, suggesting that the Arctic is an even greater sink than previously believed. Hydrology was the principal regulator of methyl halide flux, with an overall trend towards increasing methyl halide uptake with decreasing soil moisture. Water table depth was one of the best predictors of net and gross uptake, with uptake increasing proportionately with water table depth. In drier areas, gross uptake was very high, averaging −1201 nmol CH3Cl m−2 day−1 and −34.9 nmol CH3Br m−2 day−1; in flooded areas, gross uptake was significantly lower, averaging −61 nmol CH3Cl m−2 day−1 and −2.3 nmol CH3Br m−2 day−1. Net and gross uptake was greater in the continental interior than in the northern coastal plain, presumably due to drier inland conditions. Within certain microtopographic features (low‐ and high‐centered polygons), uptake rates were positively correlated with soil temperature, indicating that temperature played a secondary role in methyl halide uptake. Incubations suggested that the inverse relationship between water content and methyl halide uptake was the result of mass transfer limitation in saturated soils, rather than because of reduced microbial activity under anaerobic conditions. These findings have potential regional significance, as the Arctic is expected to become warmer and drier due to anthropogenic climate forcing, potentially enhancing the Arctic sink for CH3Cl and CH3Br.  相似文献   

7.
A novel dehalogenating/transhalogenating enzyme, halomethane:bisulfide/halide ion methyltransferase, has been isolated from the facultatively methylotrophic bacterium strain CC495, which uses chloromethane (CH3Cl) as the sole carbon source. Purification of the enzyme to homogeneity was achieved in high yield by anion-exchange chromatography and gel filtration. The methyltransferase was composed of a 67-kDa protein with a corrinoid-bound cobalt atom. The purified enzyme was inactive but was activated by preincubation with 5 mM dithiothreitol and 0.5 mM CH3Cl; then it catalyzed methyl transfer from CH3Cl, CH3Br, or CH3I to the following acceptor ions (in order of decreasing efficacy): I, HS, Cl, Br, NO2, CN, and SCN. Spectral analysis indicated that cobalt in the native enzyme existed as cob(II)alamin, which upon activation was reduced to the cob(I)alamin state and then was oxidized to methyl cob(III)alamin. During catalysis, the enzyme shuttles between the methyl cob(III)alamin and cob(I)alamin states, being alternately demethylated by the acceptor ion and remethylated by halomethane. Mechanistically the methyltransferase shows features in common with cobalamin-dependent methionine synthase from Escherichia coli. However, the failure of specific inhibitors of methionine synthase such as propyl iodide, N2O, and Hg2+ to affect the methyltransferase suggests significant differences. During CH3Cl degradation by strain CC495, the physiological acceptor ion for the enzyme is probably HS, a hypothesis supported by the detection in cell extracts of methanethiol oxidase and formaldehyde dehydrogenase activities which provide a metabolic route to formate. 16S rRNA sequence analysis indicated that strain CC495 clusters with Rhizobium spp. in the alpha subdivision of the Proteobacteria and is closely related to strain IMB-1, a recently isolated CH3Br-degrading bacterium (T. L. Connell Hancock, A. M. Costello, M. E. Lidstrom, and R. S. Oremland, Appl. Environ. Microbiol. 64:2899–2905, 1998). The presence of this methyltransferase in bacterial populations in soil and sediments, if widespread, has important environmental implications.  相似文献   

8.
NADPH reduced rabbit liver microsomal enzymes catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) to produce CF2CHCl and CF3CH2Cl. Anaerobic dehalogenation was optimal at pH7.4 and was blocked by either oxygen or carbon monoxide. The degree of inhibition of anaerobic dehalogenation by carbon monoxide was closely correlated to the proportion of carbon monoxide complex of cytochrome P450. Anaerobic dehalogenation was enhanced by pretreatment of the animals with phenobarbital but not with methylcholanthrene.  相似文献   

9.
Bacterial dehalogenation   总被引:16,自引:0,他引:16  
Halogenated organic compounds are produced industrially in large quantities and represent an important class of environmental pollutants. However, an abundance of haloorganic compounds is also produced naturally. Bacteria have evolved several strategies for the enzyme-catalyzed dehalogenation and degradation of both haloaliphatic and haloaromatic compounds: (i) Oxidative dehalogenation is the result of mono- or dioxygenase-catalyzed, co-metabolic or metabolic reactions. (ii) In dehydrohalogenase-catalyzed dehalogenation, halide elimination leads to the formation of a double bond. (iii) Substitutive dehalogenation in most cases is a hydrolytic process, catalyzed by halidohydrolases, but there also is a “thiolytic” mechanism with glutathione as cosubstrate. Dehalogenation by halohydrin hydrogen-halide lyases is the result of an intramolecular substitution reaction. (iv) A distinct dechlorination mechanism involves methyl transfer from chloromethane onto tetrahydrofolate. (v) Reductive dehalogenations are co-metabolic processes, or they are specific reactions involved in substrate utilization (carbon metabolism), or reductive dehalogenation is coupled to energy conservation: some anaerobic bacteria use a specific haloorganic compound as electron acceptor of a respiratory process. This review discusses the mechanisms of enzyme-catalyzed dehalogenation reactions, describes some pathways of the bacterial degradation of haloorganic compounds, and indicates some trends in the biological treatment of organohalogen-polluted air, groundwater, soil, and sediments. Received: 24 June 1998 / Received revision: 1 September 1998 / Accepted: 3 September 1998  相似文献   

10.
Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S grew under anoxic conditions with a variety of phenyl methyl ethers as electron donors in combination with fumarate as electron acceptor. The phenyl methyl ethers were O-demethylated to the corresponding phenol compounds. O-demethylation was strictly dependent on the presence of fumarate; no O-demethylation occurred with CO2 as electron acceptor. One mol phenyl methyl ether R-O-CH3 was O-demethylated to R-OH per 3 mol fumarate reduced to succinate. The growth yields with vanillate or syringate plus fumarate were approximately 15 g cells (dry weight) per mol methyl moiety converted. D. hafniense utilized vanillate or syringate as an electron donor for reductive dehalogenation of 3-Cl-4-hydroxyphenylacetate, whereas strain PCE-S was not able to dechlorinate tetrachloroethene with phenyl methyl ethers. Crude extracts of both organisms showed O-demethylase activity in the O-demethylase assay with vanillate or syringate as substrates when the organism was grown on syringate plus fumarate. Besides the homoacetogenic bacteria, only growing cells of Desulfitobacterium frappieri PCP-1 have thus far been reported to be capable of phenyl methyl ether O-demethylation. This present study is the first report of Desulfitobacteria utilizing phenyl methyl ethers as electron donors for fumarate reduction and for growth.Abbreviations PCE Tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - ClOHPA 3-Cl-4-Hydroxyphenylacetate - OHPA 4-Hydroxyphenylacetate - FH4 Tetrahydrofolate  相似文献   

11.
From 3-methoxyphenol-grown cells of Acetobacterium dehalogenans, an inducible enzyme was purified that mediated the transfer of the methyl groups of veratrol (1,2-dimethoxybenzene) to a corrinoid protein enriched from the same cells. In this reaction, veratrol was converted via 2-methoxyphenol to 1,2-dihydroxybenzene. The veratrol:corrinoid protein methyl transferase, designated MTIver, had an apparent molecular mass of about 32 kDa. With respect to the N-terminal amino acid sequence and other characteristics, MTIver is different from the vanillate:corrinoid protein methyl transferase (MTIvan) isolated earlier from the same bacterium. For the methyl transfer from veratrol to tetrahydrofolate, two additional protein fractions were required, one of which contained a corrinoid protein. This protein was not identical with the corrinoid protein of the vanillate O-demethylase system. However, the latter corrinoid protein could also serve as methyl acceptor for the veratrol:corrinoid protein methyl transferase. MTIver catalyzed the demethylation of veratrol, 3,4-dimethoxybenzoate, 2-methoxyphenol, and 3-methoxyphenol. Vanillate (3-methoxy-4-hydroxybenzoate), 2-methoxybenzoate, or 4-methoxybenzoate could not serve as substrates.  相似文献   

12.
Almost all of the chlorine-containing gas emitted from natural sources is methyl chloride (CH3Cl), which contributes to the destruction of the stratospheric ozone layer. Tropical and subtropical plants emit substantial amounts of CH3Cl. A gene involved in CH3Cl emission from Arabidopsis was previously identified and designated HARMLESS TO OZONE LAYER (hereafter AtHOL1) based on the mutant phenotype. Our previous studies demonstrated that AtHOL1 and its homologs, AtHOL2 and AtHOL3, have S-adenosyl-l-methionine-dependent methyltransferase activities. However, the physiological functions of AtHOLs have yet to be elucidated. In the present study, our comparative kinetic analyses with possible physiological substrates indicated that all of the AtHOLs have low activities toward chloride. AtHOL1 was highly reactive to thiocyanate (NCS), a pseudohalide, synthesizing methylthiocyanate (CH3SCN) with a very high kcat/Km value. We demonstrated in vivo that substantial amounts of NCS were synthesized upon tissue damage in Arabidopsis and that NCS was largely derived from myrosinase-mediated hydrolysis of glucosinolates. Analyses with the T-DNA insertion Arabidopsis mutants (hol1, hol2, and hol3) revealed that only hol1 showed increased sensitivity to NCS in medium and a concomitant lack of CH3SCN synthesis upon tissue damage. Bacterial growth assays indicated that the conversion of NCS into CH3SCN dramatically increased antibacterial activities against Arabidopsis pathogens that normally invade the wound site. Furthermore, hol1 seedlings showed an increased susceptibility toward an Arabidopsis pathogen, Pseudomonas syringae pv. maculicola. Here we propose that AtHOL1 is involved in glucosinolate metabolism and defense against phytopathogens. Moreover, CH3Cl synthesized by AtHOL1 could be considered a byproduct of NCS metabolism.Methyl chloride (CH3Cl) is the most abundant halohydrocarbon emitted into the atmosphere and constitutes about 17% of the chlorine currently in the stratosphere (1). CH3Cl is derived mainly from natural sources and contributes to the destruction of the stratospheric ozone layer. As the total abundance of ozone-depleting gases such as chlorofluorocarbons in the atmosphere has begun to decrease in recent years as a result of The Montreal Protocol on Substances That Deplete the Ozone Layer, the impact of CH3Cl emission from natural sources will become greater on the atmospheric chemistry. CH3Cl emission into the atmosphere has been estimated at 1,700–13,600 Gg/year (1), which underscores the great uncertainty of the estimation. Oceans (2), biomass burning (3), wood-rotting fungi, and coastal salt marshes (4) are the major sources of CH3Cl production. Recently, it was reported that large amounts of CH3Cl are emitted from tropical and subtropical plants, which are hence considered as the major sources of CH3Cl (57). It was estimated that the CH3Cl emission from tropical plants could account for 30–50% of the global CH3Cl emission (8). To accomplish an accurate estimation of CH3Cl production in the atmosphere through “bottom-up” approaches, elucidating the mechanisms and physiological functions of CH3Cl emission from plants will be important.The biological synthesis of methyl halides has been demonstrated mainly by biochemical analyses. The enzymatic activities that transfer a methyl group from S-adenosyl-l-methionine (SAM)2 to halide ions (Cl, Br, I), which synthesize methyl halides, were first discovered in cell-free extracts of Phellinus pomaceus (a white rot fungus), Endocladia muricata (a marine red alga), and Mesembryanthemum crystallinum (ice plant, a halophytic plant) (9). Enzyme purification and cDNA cloning of the methyl chloride transferase (MCT) was first reported with Batis maritima, a halophytic plant that grows abundantly in salt marshes. As high concentrations of ions such as Cl are often detrimental to plants, halophytic plants are considered to possess various salt tolerance mechanisms. MCT was hypothesized to control and regulate the internal concentration of Cl, rich in the habitat in which halophytic plant grows (10, 11).In the meantime, purification of thiol methyltransferase (TMT), which methylates bisulfide (HS) and halide (Cl, Br, I) ions was reported with cabbage, Brassica oleracea (12). The purified and recombinant TMTs were later shown to also methylate the thiocyanate ion (NCS), which is called pseudohalide because of its chemical properties similar to halide ions (13, 14). NCS is a hydrolysis product found in some glucosinolates, which are secondary metabolites found mainly in the order Brassicales including the model plant Arabidopsis thaliana (15). Upon tissue damage such as by insect or herbivore attack, glucosinolates are hydrolyzed by myrosinase (β-thioglucosidase) into biologically active compounds including isothiocyanates. Isothiocyanates derived from indole glucosinolates and 4-hydroxybenzyl glucosinolates are reported to be highly unstable and yield NCS upon reacting with various nucleophiles (1517). Based on the enzymatic activity, the physiological role of TMT was speculated to metabolize glucosinolate breakdown products (14). However, there are no reported studies that examine these MCT and TMT hypotheses through in vivo experiments.An Arabidopsis homolog of MCT was also identified, and its T-DNA insertion Arabidopsis mutants were analyzed (18). Because the gene disruption eliminated almost all of the methyl halide emissions from the mutants, the gene was revealed to be involved in methyl halide synthesis and was designated HOL (HARMLESS TO OZONE LAYER; denoted as AtHOL1 in our studies) based on the mutant phenotype (18). Recently, we identified AtHOL1 homologs AtHOL2 and AtHOL3 in Arabidopsis, and we demonstrated biochemically that the three recombinant AtHOLs have SAM-dependent methyltransferase activities (19). In this study, reverse genetic and biochemical analyses of all AtHOL isoforms revealed that AtHOL1 in vivo is involved in the methylation of NCS produced by glucosinolate hydrolysis. Although there are several studies that have examined the biological activities of glucosinolate hydrolysis products, the mechanisms of NCS synthesis and its methylation to methyl thiocyanate (CH3SCN) have yet to be reported in detail. The biological activity and physiological function of CH3SCN synthesized by AtHOL1 was also examined.  相似文献   

13.
A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.Definitions for model parameters RX halogenated aliphatic substrate - E-M n reduced dehalogenase - E-M n+2 oxidized dehalogenase - [E-M n ] steady-state concentration of the reduced dehalogenase (moles of reduced dehalogenase per unit volume) - [E-M n+2] steady-state concentration of the oxidized dehalogenase (moles of reduced dehalogenase per unit volume) - DH2 primary exogenous electron-donor substrate - A primary exogenous electron-acceptor substrate - A2 second primary exogenous electron-acceptor substrate - X biomass concentration (biomass per unit volume) - f fraction of biomass that is comprised of the dehalogenase (moles of dehalogenase per unit biomass) - stoichiometric coefficient for the reductive dehalogenation reaction (moles of dehalogenase oxidized per mole of halogenated substrate reduced) - stoichiometric coefficient for oxidation of the primary electron donor (moles of dehalogenase reduced per mole of donor oxidized) - stoichiometric coefficient for oxidation of the endogenous electron donor (moles of dehalogenase reduced per unit biomass oxidized) - stoichiometric coefficient for reduction of the primary electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - stoichiometric coefficient for reduction of the second electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - r RX rate of the reductive dehalogenation reaction (moles of halogenated substrate reduced per unit volume per unit time) - r d1 rate of oxidation of the primary exogenous electron donor (moles of donor oxidized per unit volume per unit time) - r d2 rate of oxidation of the endogenous electron donor (biomass oxidized per unit volume per unit time) - r a1 rate of reduction of the primary exogenous electron acceptor (moles of acceptor reduced per unit volume per unit time) - r a2 rate of reduction of the second primary electron acceptor (moles of acceptor reduced per unit volume per unit time) - k RX mixed second-order rate coefficient for the reductive dehalogenation reaction (volume per mole dehalogenase per unit time) - k d1 mixed-second-order rate coefficient for oxidation of the primary electron donor (volume per mole dehalogenase per unit time) - k d2 mixed-second-order rate coefficient for oxidation of the endogenous electron donor (volume per mole dehalogenase per unit time) - b first-order biomass decay coefficient (biomass oxidized per unit biomass per unit time) - k a1 mixed-second-order rate coefficient for reduction of the primary electron acceptor (volume per mole dehalogenase per unit time) - k a2 mixed-second-order rate coefficient for reduction of the second primary electron acceptor (volume per mole dehalogenase per unit time) - q m,ap apparent maximum specific rate of reductive dehalogenation (moles of RX per unit biomass per unit time) - K ap apparent half-saturation concentration for the halogenated aliphatic substrate (moles of RX per unit volume) - k ap apparent pseudo-first-order rate coefficient for reductive dehalogenation (volume per unit biomass per unit time)  相似文献   

14.
Cell extracts of Peptostreptococcus productus (strain Marburg) obtained from CO grown cells mediated the synthesis of acetate from CO plus CO2 at rates of 50 nmol/min × mg of cell protein. 14CO was specifically incorporated into C1 of acetate. No label exchange occurred between 14C1 of acetyl-CoA and CO, indicating that 14CO incorporation into acetate was by net synthesis rather than by an exchange reaction. In acetate synthesis from CO plus CO2 the latter substrate could be replaced to some extent by formate or methyl tetrahydrofolate as the methyl donor. The methyl group of methyl cobalamin was incorporated into acetate ony at very low activities. The cell extracts contained high levels of enzyme activities involved in acetate or cell carbon synthesis from CO2. The following enzymic activities were detected: CO: methyl viologen oxidoreductase, formate dehydrogenase, formyl tetrahydrofolate synthetase, methenyl tetrahydrofolate cyclohydrolase, methylene tetrahydrofolate dehydrogenase, methylene tetrahydrofolate reductase, phosphate acetyltransferase, acetate kinase, hydrogenase, NADPH: benzyl viologen oxidoreductase, and pyruvate synthase. Some kinetic and other properties were studied.  相似文献   

15.
Many wood-rotting fungi, including Phellinus pomaceus, produce chloromethane (CH3Cl). P. pomaceus can be cultured in undisturbed glucose mycological peptone liquid medium to produce high amounts of CH3Cl. The biosynthesis of CH3Cl is catalyzed by a methyl chloride transferase (MCT), which appears to be membrane bound. The enzyme is labile upon removal from its natural location and upon storage at low temperature in its bound state. Various detergents failed to solubilize the enzyme in active form, and hence it was characterized by using a membrane fraction. The enzyme had a sharp pH optimum between 7 and 7.2. Its apparent Km for Cl (ca. 300 mM) was much higher than that for I (250 μM) or Br (11 mM). A comparison of these Km values to the relative in vivo methylation rates for different halides suggests that the real Km for Cl may be much lower, but the calculated value is high because the CH3Cl produced is used immediately in a coupled reaction. Among various methyl donors tested, S-adenosyl-l-methionine (SAM) was the only one that supported significant methylation by MCT. The reaction was inhibited by S-adenosyl-l-homocysteine, an inhibitor of SAM-dependent methylation, suggesting that SAM is the natural methyl donor. These findings advance our comprehension of a poorly understood metabolic sector at the origin of biogenic emissions of halomethanes, which play an important role in atmospheric chemistry.Halogenated organic compounds are ubiquitous in nature (29). They participate in the depletion of stratospheric ozone and have a profound impact on atmospheric chemistry (4, 18, 24). Although the dominant sources of these compounds are biogenic emissions (12, 25, 26, 28), their significance to the emitter organisms is rather poorly understood, with only a few indications of the roles they might play. In fungi, halomethanes serve as methyl group donors for the biosynthesis of esters, anisoles, and veratryl alcohol (9, 11). In algae, halomethanes are by-products of reactions in which scavenging of H2O2 releases HOBr, which is presumed to be a defense molecule against bacteria, fungi, and herbivores (23, 27). A recent report (28) that a marine alga, Endocladia muricata, and a salt-tolerant plant, Mesembryanthemum crystallinum, could methylate Cl ions to chloromethane (CH3Cl) triggered speculation that this may be a mechanism for Cl detoxification and salt tolerance. The S-adenosyl-l-methionine (SAM)-dependent methyl chloride transferase (MCT) that catalyzes this reaction was partially purified from E. muricata (28). The enzyme can also use I and Br as substrates.These results suggest possibilities for engineering a Cl detoxification capability into crop plants, many of which are sensitive to Cl (6, 17). Wood-rotting fungi of the family Hymenochaetaceae are the most efficient producers of CH3Cl (5, 7, 13). Phellinus pomaceus converts Cl to CH3Cl with over 90% efficiency, even at extremely low concentrations of the ion (7). A low MCT activity was detected in cell extracts of this fungus (28).Halomethanes are the primary carriers of halogens between the biosphere and the atmosphere (4, 18) and therefore play pivotal roles in the effect of halogens on atmospheric chemistry and the integrity of the ozone layer (24). Since biogenic sources are major contributors of atmospheric halomethanes (7, 12, 18, 25, 28), attempts to understand atmospheric composition must include an understanding of the metabolic processes underlying the generation of these gases. In addition, engineering a Cl detoxification capability into plants depends on the identification of novel metabolic pathways and an understanding of their regulation. Within this dual context, our objective was to determine the biochemical nature of the CH3Cl-evolving system of P. pomaceus.  相似文献   

16.
Tetrahydrobiopterin and the folate coenzymes can reciprocally interact in ways that would be useful to the metabolic pathways subserved by both of these coenzymes. Thus, through one of the reactions catalyzed by methylene tetrahydrofolate reductase, 5-CH3-H4-folate can regenerate BH4 from q-BH2 and q-BH2 can provide an escape from the methyl trap.Special issue dedicated to Dr. Louis Sokoloff  相似文献   

17.
Trotsenko  Yu. A.  Doronina  N. V. 《Microbiology》2003,72(2):121-131
Recent data on the biology of aerobic methylotrophic bacteria capable of utilizing toxic halogenated methane derivatives as sources of carbon and energy are reviewed, with particular emphasis on the taxonomic, physiological, and biochemical diversity of mono- and dihalomethane-degrading methylobacteria and the enzymatic and genetic aspects of their primary metabolism. The initial steps of chloromethane dehalogenation to formate and HCl through a methylated corrinoid and methyltetrahydrofolate are catalyzed by inducible cobalamin methyl transferase, made up of two proteins (CmuA and CmuB) encoded by the cmuA and cmuB genes. At the same time, the primary dehalogenation of dichloromethane to formaldehyde and HCl is catalyzed by cytosolic glutathione transferase with S-chloromethylglutathione as an intermediate. The latter enzyme is encoded by the structural dcmA gene and is under the negative control of the regulatory dcmR gene. In spite of considerable progress in the study of halomethane dehalogenation, some aspects concerning the structural and functional organization of this process and its regulation remain unknown, including the mechanisms of halomethane transport, the release of toxic dehalogenation products (S-chloromethylglutathione, CH2O, and HCl) from cells, and the maintenance of intracellular pH. Of particular interest is a quantitative evaluation of the ecophysiological role of aerobic methylobacteria in the mineralization of halomethanes and the protection of the biosphere from these toxic pollutants.  相似文献   

18.
Methylobacterium sp. strain CM4 is a strictly aerobic methylotrophic proteobacterium growing with chloromethane as the sole carbon and energy source. Genetic evidence and measurements of enzyme activity in cell-free extracts have suggested a multistep pathway for the conversion of chloromethane to formate. The postulated pathway is initiated by a corrinoid-dependent methyltransferase system involving methyltransferase I (CmuA) and methyltransferase II (CmuB), which transfer the methyl group of chloromethane onto tetrahydrofolate (H4folate) [Vannelli et al. (1999) Proc. Natl Acad. Sci. USA 96, 4615-4620]. We report the overexpression in Escherichia coli and the purification to apparent homogeneity of methyltransferase II. This homodimeric enzyme, with a subunit molecular mass of 33 kDa, catalyzed the conversion of methylcobalamin and H4folate to cob(I)alamin and methyl-H4folate with a specific activity of 22 nmol x min-1 x (mg protein)-1. The apparent kinetic constants for H4folate were: Km = 240 microM, Vmax = 28.5 nmol x min-1 x (mg protein)-1. The reaction appeared to be first order with respect to methylcobalamin at concentrations up to 2 mM, presumably reflecting the fact that methylcobalamin is an artificial substitute for the methylated methyltransferase I, the natural substrate of the enzyme. Tetrahydromethanopterin, a coenzyme also present in Methylobacterium, did not serve as a methyl group acceptor for methyltransferase II. Purified methyltransferase II restored chloromethane dehalogenation by a cell free extract of a strain CM4 mutant defective in methyltransferase II.  相似文献   

19.
N5,N10 -methylene tetrahydrofolate reductase has been purified 100-fold from bovine brain. The initial fractionation with protamine sulfate and ammonium sulfate was followed by chromatography on DEAE-polyacrylamide gel (Bio Gel DM-30) and Sephadex G-200 as well as the selective adsorption and elution of the enzyme on calcium phosphate gel. The purified enzyme required FADH2 and catalyzed the reduction of the methylene group of N5,N10 -methylene tetrahydrofolate to the methyl group of N5 -methyl tetrahydrofolate. The pH optimum of the bovine brain reductase occurred at a pK of 6.5. The enzyme proved quite unstable. Both air oxidation and prolonged periods of storage at -20° inactivated the enzyme.  相似文献   

20.
Summary An obligately anaerobic bacterium known as strain DCB-1 was grown under a variety of conditions to determine the requirements for dehalogenation as well as factors which stimulated or inhibited the process. Dechlorination was obligately anaerobic since introduction of O2 immediately inhibited the reaction. Sulfuroxy anions, which also serve as electron acceptors for DCB-1, inhibited dechlorination but NO3 and fumarate did not. The optimum growth medium for dechlorination was 0.2% Na pyruvate and 20% rumen fluid in basal salts. Media with either pyruvate or rumen fluid alone did not support dechlorination. DCB-1 also consumed H2 but typical substrate concentrations of H2 (80 kPa) delayed dechlorination. Once the H2 concentration was reduced to <20 M (2.67 kPa), dechlorination resumed. Dehalogenation by DCB-1 was restricted to the meta substituted benzoates as halogens in other positions and chloroaromatic compounds with other functional groups were not dechlorinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号