首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

2.
Summary The nodulation and the morphology and physiology of the nodules were studied onDatisca cannabina, a perennial herb from northern Pakistan andAlnus nitida, a nodulated tree in the same locality. Both species bear coralloid clusters of actinorhizal nodules. The main free amino acid inD. cannabina nodules was arginine while the predominant free amino acid inA. nitida nodules was citrulline. The infectivity of crushed nodules of both types of plants on their respective host was about 106 infective particles per gram of nodule fresh wt. In cross-inoculation experiments crushed nodule inoculum fromA. nitida failed to induce nodulation onD. cannabina seedlings but the crushed nodule inoculum fromD. cannabina caused low nodulation on seedlings ofA. nitida (103 infective particles. g. nodule fresh wt.).The activity of nitrogenase, hydrogenase and respiration (O2 uptake) were measured in detached nodules, nodule homogenates and the 20 m residue and 20 m filtrate preparations from the nodules of both species. Both species showed similar patterns of activities except that only the nodule homogenate and 20 m residue preparations fromD. cannabina showed pronounced enhancement of the O2 uptake by succinate which was further stimulated by ADP. This has in part been explained by the presence of mitochondria in close connection with the endophyte.  相似文献   

3.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

4.
In the present study, we examined the effects of iron deficiency in an acid solution and in an alkaline solution containing bicarbonate on the growth and nodulation of peanuts inoculated with different bradyrhizobial strains or supplied with fertilizer nitrogen.Inadequate iron supply in acid solution decreased the number of nodule initials, nodule number and nodule mass. Alleviating the iron deficiency increased acetylene reduction but not bacteroid numbers in nodules. Nitrogen concentrations in shoots of inoculated plants increased as iron concentrations in solution increased when determined at day 30 but not at day 50. Higher iron concentrations in solution were required for maximum growth of plants reliant on symbiotic nitrogen fixation than for those receiving fertilizer nitrogen.Adding bicarbonate to the solution with 7.5 M Fe markedly depressed nodule formation. This effect was much more severe than that of inadequate iron supply alone. Bicarbonate also decreased nitrogenase activity but did not decrease bacteroid concentrations in nodules.Both NC92 and TAL1000 nodulated peanuts poorly when bicarbonate was present. However, an interaction between iron concentrations in acid solutions and Bradyrhizobium strains on nodulation of peanuts was observed. Alleviating iron deficiency increased the number of nodule initials and nodules to a much greater extent for plants inoculated with TAL1000 than for plants inoculated with NC92.  相似文献   

5.
Chlorate resistant spontaneous mutants ofAzospirillum spp. (syn.Spirillum lipoferum) were selected in oxygen limited, deep agar tubes with chlorate. Among 20 mutants fromA. brasilense and 13 fromA. lipoferum all retained their functional nitrogenase and 11 from each species were nitrate reductase negative (nr). Most of the mutants were also nitrite reductase negative (nir), only 3 remaining nir+. Two mutants from nr+ nir+ parent strains lost only nir and became like the nr+ nir parent strain ofA. brasilense. No parent strain or nr+ mutant showed any nitrogenase activity with 10 mM NO 3 . In all nr mutants, nitrogenase was unaffected by 10 mM NO 3 . Nitrite inhibited nitrogenase activity of all parent strains and mutants including those which were nir. It seems therefore, that inhibition of nitrogenase by nitrate is dependent on nitrate reduction. Under aerobic conditions, where nitrogenase activity is inhibited by oxygen, nitrate could be used as sole nitrogen source for growth of the parent strains and one mutant (nr nir) and nitritite of the parent strains and 10 mutants (all types). This indicates the loss of both assimilatory and dissimilatory nitrate reduction but only dissimilatory nitrite reduction in the mutants selected with chlorate.  相似文献   

6.
The specific nodulation, nitrogenase activity (acetylene reduction) and budgets of carbon allocation to respiration by nodulated roots were examined in two provenances of Acacia mangium Willd. grown in a glasshouse for 17 weeks to investigate the effects of soil phosphorus and genotypes of the host plant on symbiotic nitrogen fixation. Application of phosphorus (0–80 mg P kg-1 soil) increased specific nodulation (g nodule dry weight g-1 plant dry weight) of provenance Ma11 by two-fold and the percentage of nodulated root respiration allocated to nitrogenase by 50%, but had no effect on specific activity of nitrogenase or specific respiration coupled with nitrogenase activity. Improved phosphorus nutrition increased the specific nitrogenase activity of provenance Ma9 by 2-fold, the percentage of nodulated root respiration allocated to nitrogenase, and specific nitrogenase-linked respiration by 50%, respectively, but had no effect on the specific nodulation. The percentage of respiration coupled with nitrogenase activity in nodulated root respiration by provenance Ma9 was 60–70% higher than that in provenance Ma11, regardless of phosphorus levels applied. At the optimal level of phosphorus addition (10 mg P kg-1 soil), provenance Ma9 had a lower dry mass than provenance Ma11. This was accompanied by a lower nodulated root respiration and a higher percentage of nodulated root respiration allocated to nitrogenase activity in provenance Ma9.  相似文献   

7.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,250(1):155-165
N2-fixation is sensitive to limitation in the availability of newly synthesised carbohydrates for the nodules. We decided to explore the response of the D. trinervis - Frankia symbiosis to a transient decrease in carbohydrate supply to nodules. Feedback inhibition of nodulation as well as nodule growth was not released by a 6-day dark stress in D. trinervis nodulated plants. However, nitrogen fixation and assimilation were affected by the imposed stress. Nitrogenase activity was totally inhibited after 4 days of darkness although high levels of nitrogenase components were still detected at this time. Degradation of FeMo and Fe nitrogenase subunits – both at similar rates – was observed after 6 days of dark stress, revealing the need for inactivation to precede enhancement of protein turnover. Glutamine synthetase (GS), malate dehydrogenase (MDH) and asparagine synthetase (AS) polypeptides were also degraded during the dark stress, although at a lower rate than nitrogenase. ARA and nitrogenase were totally recovered 8 days after resuming normal illumination. It seems that current nitrogenase activity and ammonium assimilation are not, or are only weakly linked with the feedback control of nodulation in D. trinervis. These observations give support to the persistence of an autoregulatory signal in mature nodules that is not sensitive to transient shortages of carbon supply and sustains the inhibition of nodulation in the transient absence of N2 fixation.  相似文献   

8.
Summary The effect of nutrient supply on nodule formation and competition between Rhizobium strains for nodulation ofLotus pedunculatus was studied. Limiting plant growth by decreasing the supply of nutrients in an otherwise nitrogen-free medium, increased the size but decreased the number and the nitrogenase activity of nodules formed by a fast-growing strain of Lotus Rhizobium (NZP2037). In contrast decreasing nutrient supply caused only a small decline in the size, number and nitrogenase activity of nodules formed by a slow-growing strain (CC814s). Providing small quantities of NH4NO3 (50 to 250 g N) to plants grown with a normal supply of other nutrients stimulated nodule development by both Rhizobium strains and increased the nitrogenase activity of the NZP2037 nodules. Differences in the level of effectiveness (nitrogen-fixing ability) of nodules formed by different Rhizobium strains on plants grown with a normal supply of nutrients were less apparent when the plants were grown with decreased nutrient supply or when the plants were supplied with low levels of inorganic N.Inter-strain competition for nodulation ofL. pedunculatus between the highly effective slow-growing strain CC814s and 7 other fast- and slow-growing strains, showed CC814s to form 42 to 100% of the nodules in all associations. The greater nodulating competitiveness of strain CC814s prevailed despite changes in the nutrient supply to the host plant. A tendency was observed for partially effective Lotus Rhizobium strains to become more competitive in nodule formation when plant growth was supplemented with low levels of inorganic nitrogen.  相似文献   

9.
Summary Experiments with black locust (Robinia pseudoacacia L.) seedlings grown under strictly controlled laboratory conditions indicated that the availability of nitrate has a marked impact on nitrogen fixation. When nitrate concentrations were very low, both nodulation and seedling growth were impaired, whereas nitrate concentrations high enough to promote plant growth strongly inhibited symbiotic nitrogen fixation. When nitrate was added to the growth medium after infection, nodulation and nitrogen fixation of the seedlings decreased. This effect was even more marked when nitrate was applied before infection with rhizobia. Higher nitrogen concentrations also reduced nodule number and nodule mass when applied simultaneously with the infecting bacteria. The contribution of symbiotic nitrogen fixation to black locust shoot mass by far exceeded its effects on shoot length and root mass. When nitrate availability was very low, specific nitrogen fixation (i. e. nitrogenase activity per nodule wet weight) was improved with increasing nitrogen supply, but rapidly decreased with higher nitrogen concentrations.  相似文献   

10.
E. Jacobsen 《Plant and Soil》1984,82(3):427-438
Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation.The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.  相似文献   

11.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

12.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

13.
The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO3, urea, NH4Cl, and NH4NO3). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KNO3 and urea, nitrogenase activity was considerably higher in nts382 than in Bragg. Mutant plants were generally smaller than wild-type plants. Although nts382 is a supernodulator, inoculation with Rhizobium japonicum was necessary to induce nodule formation and both trial strains CB1809 (= USDA136) and USDA110 elicited the mutant phenotype. Segregation of M3 progeny derived from a M2 wild-type plant indicated that the mutant character is inherited as a Mendelian recessive. The mutant is discussed in the context of regulation of nodulation and of hypotheses that have been proposed to explain nitrate inhibition of nodulation.  相似文献   

14.
We have investigated the effect on growth of fertilisation versus biological nitrogen fixation by rhizobial nodules in Retama sphaerocarpa(L.) Boiss, a leafless leguminous shrub native to the Iberian Peninsula and North-West Africa that has generated interest for revegation of dry Mediterranean habitats. Our main objective was to optimise the formation of root nodules under nursery conditions and to evaluate their influence on the first year of seedling growth in comparison with standard fertilisation. Seedlings of R. sphaerocarpa from two Spanish localities were grown under two levels of fertilisation, and half of each were inoculated with rhizobia isolated from adult Retama, Cytisus and Adenocarpusplants in the field. Although some promiscuity was observed, nodulation was significantly successful with specific rhizobia. At the end of the experiment, highly fertilised plants were taller and heavier and exhibited larger photosynthetic rates than either nodulated or non-nodulated plants under low fertilisation. High fertilisation enhanced seedling growth but inhibited both the nodulation and the nitrogenase activity of the nodules. Thus, physiological differences between nodulated and non-nodulated plants were observed in the low but not in the high fertilisation treatment. Nitrogen uptake and use was enhanced by root nodules, which translated into enhanced photosynthesis and growth. Since inoculation is simple, environmentally friendly and cheap, and nodulated plants are more likely to overcome transplant stress than non-nodulated ones, our results suggest that inoculation together with low, background fertilisation (instead of high fertilisation) should be used when producing high quality seedlings of this autochthonous Mediterranean shrub.  相似文献   

15.
Summary Four cultivars ofTrifolium subterraneum were nodulated by five strains ofRhizobium leguminosarum; all combinations except one gave 100% nodulation. Rates of nodule formation and total nodule numbers were similar to those with an effectiveR. trifolii strain. The nodules were more commonly associated with lateral roots and were ineffective in nitrogen fixation.  相似文献   

16.
Summary The effect of exogenous applications of gibberellins (GAs) or the growth retardant -chloroethyltrimethylammonium chloride (CCC) on root nodule formation and activity (C2H2-reduction) in soya was studied. Daily foliar application of GA3 (2.89×10–6 M) delayed the formation of nodule initials and reduced the numbers mass nodule–1 and specific activity of nodules by 43%, 31% and 47% respectively, without affecting plant growth. Similar effects on nodulation were produced by foliar application of GA4 (3.01×10–5 M) or GA7 (3.03×10–5 M), or by the addition of GA3 (2.89×10–6 M) to the rooting medium. GA effectiveness in reducing nodule numbers was decreased by delaying its application until after the initial infection process had occurred, but the nodules formed were smaller and less active than those of the untreated control plants. The GA effect on nodulation and nodule activity was not associated with alterations in root exudate or due to a direct inhibitory effect of the hormone on the nitrogenase system. When the endogenous root content of GA-like substances was reduced (86% decrease) by foliar application of CCC (6.30×10–5 M), nodule numbers were increased by 56%, but nodule size and total nodule activity were similar to those of control plants. The GA and CCC treatments had no effect on rhizobial growth in liquid culture nor on root colonisation by rhizobia.The results suggest that the endogenous content of root GA may have a regulatory role in both the infection process and in subsequent nodule morphogenesis, thus controlling both the number and effectiveness of the root nodules formed.  相似文献   

17.
Field, greenhouse and laboratory investigations were conducted to determine the effect of four dinitroaniline herbicides on rhizobia, nodulation and nitrogen fixation of four groundnut cultivars. Benefin, dinitramine and nitralin used at recommended levels decreased nodule dry weight, nitrogenase activity and total nitrogen of groundnut tops and pod yield in three cultivars Kadiri 71-1, Kadiri-2, ICGS-11 and not for a fourth cultivar, Kadiri-3 of groundnut (Arachis hypogaea L.), but fluchloralin used at the recommended level increased the nodulation rate, nitrogenase activity and total nitrogen of groundnut tops and pod yield compared to untreated plants. Studies were conducted in vitro to determine the relative toxicity of the herbicides on four Rhizobium strains isolated from the nodules of four cultivars of groundnut. It was found that various strains of rhizobia differ in their sensitivity to different rates of the herbicides tested. Carbon dioxide exchange rate (CER) of all the cultivars which received herbicide treatment was measured at different time intervals to determine the relationship between photosynthesis and inhibition of nodulation. The lack of adverse effect on the CER of four cultivars when treated at recommended concentrations indicated that nitrogen fixation was affected in cultivars Kadiri 71-1, Kadiri-2 and ICGS-11 due to inhibition of nodulation.  相似文献   

18.
The interaction between nitrate respiration and nitrogen fixation inAzospirillum lipoferum andA. brasilense was studied. All strains examined were capable of nitrogen fixation (acetylene reduction) under conditions of severe oxygen limitation in the presence of nitrate. A lag phase of about 1 h was observed for both nitrate reduction and nitrogenase activity corresponding to the period of induction of the dissimilatory nitrate reductase. Nitrogenase activity ceased when nitrate was exhausted suggesting that the reduction of nitrate to nitrite, rather than denitrification (the further reduction of nitrite to gas) is coupled to nitrogen fixation. The addition of nitrate to nitrate reductase negative mutants (nr-) ofAzospirillum did not stimulate nitrogenase activity. Under oxygen-limited conditionsA. brasilense andA. lipoferum were also shown to reduce nitrate to ammonia, which accumulated in the medium. Both species, including strains ofA. brasilense which do not possess a dissimilatory nitrite reductase (nir-) were also capable of reducing nitrous oxide to N2.  相似文献   

19.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,254(1):139-153
Asparagine was found to be the main N compound exported from Discaria trinervis nodules. Aspartate (Asp), glutamate (Glu), alanine (Ala) and serine (Ser) were also detected in root xylem sap, but at lower concentrations. A comparable picture is found in nodulated alfalfa. We hypothesized that a similar set of enzymes for Asn synthesis was present in D. trinervis nodules. We demonstrate the expression of most of the enzymes involved in the synthesis of Asn from NH+ 4 and oxoacids, in nodules – but not in roots – of fully symbiotic D. trinervis. By complementation of enzyme assays (A) and immunodetection (I) we detected glutamane-synthetase (GSA, I), Asp-aminotransferase (AATA), malate-dehydrogenase (MDHA, I, at least two isoforms), Glu-dehydrogenase (GDHA), Glu-synthase (GOGATI) and Asn-synthetase (ASI). PEP-carboxylase (PEPC) activity was not detected. We previously shown that N acts as a negative regulator of nodulation and nodule growth, while P is a strong stimulator for nodule growth. We present data on the regulation of nodule N metabolism by altering, during 4 weeks, the availability of N, P and light in symbiotic D. trinervis. NH4NO3 (2 mM) induced inactivation and degradation of nodule GS, MDH and AS, but activation of GDH and AAT; the amount of nitrogenase components was not affected. A 10-fold increase in P supply did not greatly affect activity and amount of enzymes, suggesting that N metabolism is not P-limited in nodules. On the other hand, suppression of P supply induced an important reduction of nodule GS, GOGAT, MDH and AS protein levels, although nitrogenase was not affected. GDH was the only measured activity that was stimulated by limiting P supply. Shading plants did result in complete degradation of nitrogenase and partial degradation of GS, AS and nodule-specific MDH isoform, but GDH and AAT were activated. These results are discussed in connection with the regulation of nodulation and nodule growth in D. trinervis.  相似文献   

20.
Effect of pre-treatments of 1 and 5 M epibrassinolide or homobrassinolide prior to water stress induction on changes in root nodulation and contents of endogenous abscisic acid (ABA) and cytokinin trans-zeatin riboside (ZR), and nitrogenase activity was investigated in the nodulated roots of Phaseolus vulgaris L. cv. Arka Suvidha. Brassinosteroids in the unstressed plants increased root nodulation, ZR content and nitrogenase activity, and also ameliorated their stress-induced decline in the nodulated roots. The ABA contents in the nodules of control or stressed plants were not altered by brassinosteroids treatment. There was an increase in pod yield by brassinosteroids treatment (5 M) in the irrigated control as well as stressed plants without influencing pod number or pod length. Among the brassinosteroids, epibrassinolide was relatively more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号