首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.  相似文献   

2.
The discovery that plants contain multiple calmodulin (CaM) isoforms having variable sequence identity to mammalian CaM has sparked a flurry of new questions regarding the intracellular role of Ca(2+) regulation in plants. To date, the majority of research in this field has focused on the differential enzymatic regulation of various mammalian CaM-dependent enzymes by the different plant CaM isoforms. However, there is comparatively little information on the structural recognition of target enzymes found exclusively in plant cells. Here we have used a variety of spectroscopic techniques, including nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, to study the interactions of the most conserved and most divergent CaM isoforms from soybean, SCaM-1, and SCaM-4, respectively, with a synthetic peptide derived from the CaM-binding domain of cauliflower vacuolar calcium-ATPase. Despite their sequence divergence, both SCaM-1 and SCaM-4 interact with the calcium-ATPase peptide in a similar calcium-dependent, stoichiometric manner, adopting an antiparallel binding orientation with an alpha-helical peptide. The single Trp residue is bound in a solvent-inaccessible hydrophobic pocket on the C-terminal domain of either protein. Thermodynamic analysis of these interactions using isothermal titration calorimetry demonstrates that the formation of each calcium-SCaM-calcium-ATPase peptide complex is driven by favorable binding enthalpy and is very similar to the binding of mammalian CaM to the CaM-binding domains of myosin light chain kinases and calmodulin-dependent protein kinase I.  相似文献   

3.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

4.
Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.  相似文献   

5.
Yamniuk AP  Vogel HJ 《Biochemistry》2005,44(8):3101-3111
The conserved calmodulin (CaM) isoform SCaM-1 and the divergent SCaM-4 from soybean bind to many of the same target enzymes, but differentially activate or competitively inhibit them. Class 1 target enzymes are activated by both calcium (Ca(2+))-bound SCaM-1 (Ca(2+)-SCaM-1) and Ca(2+)-bound SCaM-4 (Ca(2+)-SCaM-4), while class 2 enzymes are activated by Ca(2+)-SCaM-1 but competitively inhibited by Ca(2+)-SCaM-4, and class 3 enzymes are activated by Ca(2+)-SCaM-4 but competitively inhibited by Ca(2+)-SCaM-1. To determine whether these differences can be attributed to unique interactions with the CaM-binding domains (CaMBD) of these enzymes, we have studied the binding of each protein to peptides derived from the CaMBD of a representative target enzyme from each of these three classes. Using a combination of NMR spectroscopy and isothermal titration calorimetry, we demonstrate that the N- and C-domains of either Ca(2+)-SCaM bind to each peptide to form structurally compact complexes driven by the burial of hydrophobic surfaces. Interestingly, the interactions with the CaMBD peptides from classes 1 and 2 are similar for the two proteins; however, binding to the peptide from class 3 is structurally and thermodynamically distinct for Ca(2+)-SCaM-1 and -4. We also demonstrate that both calcium-free SCaM-1 (apo-SCaM-1) and calcium-free SCaM-4 (apo-SCaM-4) bind to the CaMBD from cyclic nucleotide phosphodiesterase, and that the interactions are similar to each other and to the interactions with apo-mammalian CaM. Therefore, the apo-SCaMs are also capable of binding to the same target enzymes, which could provide an additional mechanism for CaM-dependent signaling in plants.  相似文献   

6.
The intracellular calcium ion is one of the most important secondary messengers in eukaryotic cells. Ca(2+) signals are translated into physiological responses by EF-hand calcium-binding proteins such as calmodulin (CaM). Multiple CaM isoforms occur in plant cells, whereas only a single CaM protein is found in animals. Soybean CaM isoform 1 (sCaM1) shares 90% amino acid sequence identity with animal CaM (aCaM), whereas sCaM4 is only 78% identical. These two sCaM isoforms have distinct target-enzyme activation properties and physiological functions. sCaM4 is highly expressed during the self-defense reaction of the plant and activates the enzyme nitric-oxide synthase (NOS), whereas sCaM1 is incapable of activating NOS. The mechanism of selective target activation by plant CaM isoforms is poorly understood. We have determined high resolution NMR solution structures of Ca(2+)-sCaM1 and -sCaM4. These were compared with previously determined Ca(2+)-aCaM structures. For the N-lobe of the protein, the solution structures of Ca(2+)-sCaM1, -sCaM4, and -aCaM all closely resemble each other. However, despite the high sequence identity with aCaM, the C-lobe of Ca(2+)-sCaM1 has a more open conformation and consequently a larger hydrophobic target-protein binding pocket than Ca(2+)-aCaM or -sCaM4, the presence of which was further confirmed through biophysical measurements. The single Val-144 --> Met substitution in the C-lobe of Ca(2+)-sCaM1, which restores its ability to activate NOS, alters the structure of the C-lobe to a more closed conformation resembling Ca(2+)-aCaM and -sCaM4. The relationships between the structural differences in the two Ca(2+)-sCaM isoforms and their selective target activation properties are discussed.  相似文献   

7.
The calcium/calmodulin-dependent activation of nitric-oxide synthase (NOS) and its production of nitric oxide (NO) play a key regulatory role in plant and animal cell function. SCaM-1 is a plant calmodulin (CaM) isoform that is 91% identical to mammalian CaM (wild type CaM (wtCaM)) and a selective competitive antagonist of NOS (Cho, M. J., Vaghy, P. L., Kondo, R., Lee, S. H., Davis, J. P., Rehl, R., Heo, W. D., and Johnson, J. D. (1998) Biochemistry 37, 15593-15597). We have used site-directed mutagenesis to show that a point mutation, involving the substitution of valine for methionine at position 144, is responsible for SCaM-1's inhibition of mammalian NOS. An M144V mutation in wild type CaM produced a mutant (M144V) which exhibited nearly identical inhibition of NOS's NO production and NADPH oxidation, with a similar K(i) (approximately 15 nM) as SCaM-1. A V144M back mutation in SCaM-1 significantly restored its ability to activate NOS's catalytic functions. The length of the hydrophobic amino acid side chain at position 144 appears to be critical for NOS activation, since M144L and M144F activated NOS while M144V and M144C did not. Despite their competitive antagonism of NOS, M144V, like SCaM-1, exhibited a similar dose-dependent activation of phosphodiesterase and calcineurin as wtCaM. SCaM-1 and M144V produced greater inhibition of NOS's oxygenase domain function (NO production) than its reductase domain functions (NADPH oxidation and cytochrome c reduction). Thus, CaM's methionine 144 plays a critical role the activation of NOS, presumably by influencing the function of NOS's oxygenase domain.  相似文献   

8.
9.
植物钙调素结合蛋白研究进展   总被引:23,自引:0,他引:23  
钙调素(CaM)作为最重要的一类Ca2 传感蛋白可以通过与其下游CaM结合蛋白(CaMBP)作用而调节细胞的生理功能.因此,对CaMBP的研究是揭示CaM作用机制的重要内容,是探明Ca2 -CaM信号转导系统的关键.该文从CaMBP和CaM的结合特性、植物CaMBP的分布以及植物CaMBP的生物学功能等方面综述了植物CaMBP的研究现状和最新进展.  相似文献   

10.
Calmodulin-binding proteins (CaMBPs) were analyzed during estrogen-stimulated growth in the human breast cancer cell line ZR-75-1. A variety of Ca2(+)-dependent and -independent CaMBPs were observed to be present in these cells. Calmodulin (CaM) binding to a 51-kilodalton protein was shown to be Ca2(+)-dependent. Moreover, binding to this protein was reduced in the estrogen-treated cells. This effect occurred early during estrogen-stimulated cell growth and was maintained during exponential growth in the presence of estrogen. 125I-labeled CaM overlay procedure of two-dimensional polyacrylamide gels reveals that this 51-kilodalton protein is composed of at least two distinct isoforms with different isoelectric points. Subcellular localization demonstrates that this protein resides exclusively in the microsomal fraction.  相似文献   

11.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   

12.
The calcium regulatory protein calmodulin (CaM) binds in a calcium-dependent manner to numerous target proteins. The calmodulin-binding domain (CaMBD) region of Nicotiana tabacum MAPK phosphatase has an amino acid sequence that does not resemble the CaMBD of any other known Ca2+-CaM-binding proteins. Using a unique fusion protein strategy, we have been able to obtain a high resolution solution structure of the complex of soybean Ca2+-CaM4 (SCaM4) and this CaMBD. Complete isotope labeling of both parts of the complex in the fusion protein greatly facilitated the structure determination by NMR. The 12-residue CaMBD region was found to bind exclusively to the C-lobe of SCaM4. A specific Trp and Leu side chain are utilized to facilitate strong binding through a novel “double anchor” motif. Moreover, the orientation of the helical peptide on the surface of Ca2+-SCaM4 is distinct from other known complexes. The N-lobe of Ca2+-SCaM4 in the complex remains free for additional interactions and could possibly act as a calcium-dependent adapter protein. Signaling through the MAPK pathway and increases in intracellular Ca2+ are both hallmarks of the plant stress response, and our data support the notion that coordination of these responses may occur through the formation of a unique CaM-MAPK phosphatase multiprotein complex.Calmodulin (CaM)2 is a ubiquitous intracellular Ca2+ sensor protein that plays an essential role in various Ca2+ signaling pathways. Contiguous and unique CaM-binding domain (CaMBD) regions are found widely distributed in many different types of CaM target proteins including protein phosphatases and kinases, cytoskeletal proteins, ion channels, and pumps (1, 2). Even though the CaMBD from various proteins share relatively poor amino acid sequence similarity, the majority of CaMBD become α-helical upon binding to CaM, and they can be grouped into either the 1-5-10 or the 1-8-14 motif, where the first and the last number indicate the position of two hydrophobic anchor residues that attach the CaMBD to the two binding pockets of the bilobal Ca2+-CaM. However, several noncanonical classes of CaMBD have also been identified. For example, in the CaMBD of the MARCKS protein, the two anchor residues are separated by a single amino acid residue (3). On the other hand, in the recently determined crystal structure of Ca2+-CaM complexed with the CaMBD of the skeletal muscle ryanodine receptor RYR1, they are separated by 15 residues (1–17 motif) (4). Bulky hydrophobic side chains of residues such as Trp, Leu, Phe, and Ile are most commonly utilized as anchor residues (see Fig. 1a), and these are usually deeply inserted into the hydrophobic target-binding pocket of either the N- or C-lobe of Ca2+-CaM. However, in several cases, including the N-methyl-d-aspartate receptors (NMDAR) (5) and the voltage-gated Ca2+ channels (Cav1–2) (6, 7), a polar side chain from Thr or Tyr has also been found to act as an anchor residue. In almost all Ca2+-CaM complexes studied to date, the two lobes of Ca2+-CaM become collapsed on the helical CaMBD, and they form a globular complex structure. An exception was found in the case of the Ca2+-CaM complex with an incomplete CaMBD from the plasma membrane Ca2+ pump (C20W), where only the C-lobe of Ca2+-CaM binds to the CaMBD, and the N-lobe was free in solution (8). The versatility of CaM target protein binding has been discussed in many recent reviews (for example, Refs. 2, 911).Open in a separate windowFIGURE 1.a, amino acid sequences of CaMBD from tobacco NtMKP1 (residues 438–449), Arabidopsis AtMKP1 (residues 451–462), and rice OsMKP1 (residues 456–467) are compared with various CaMBDs. The sequences are aligned at the position of the first hydrophobic anchor residue. The hydrophobic anchor residues are colored in red, while the other hydrophobic residues are shown in green. The basic residues and acidic residues are colored in cyan and pink, respectively. The residue numbers of the NtMKP1 sequence in SCaM4-NtMKP1/NtMKP1 protein are also indicated. b, schematic drawing of the two fusion proteins, SCaM4-NtMKP1 and SCaM4CT-NtMKP1.In plant cells, Ca2+ signals, arising from various extracellular stimuli such as abiotic stresses, hormones, or phytopathogens are mediated by multiple CaM isoforms to create specific cellular responses. In contrast, only a single CaM protein exists in animal cells. For example, the model plant Arabidopsis thaliana has nine CaM genes (CaM1–9) encoding seven different CaM isoforms (12, 13). Five distinct CaM genes (SCaM1–5) encoding four different CaM proteins have been identified so far in the soybean genome (14). Despite the relatively high amino acid sequence identity among these CaM isoforms (50–90%), each isoform is utilized to regulate different target enzymes related to specific cellular responses (15, 16). For example, the expression of two soybean CaM isoforms, SCaM4 and 5 is markedly up-regulated after pathogen infection, and these two proteins can activate the enzyme nitric-oxide synthase (NOS) (17). Production of nitric oxide is thought to be one of the early events in the plant defense reactions (18, 19). On the other hand, SCaM1 is incapable of activation of the NOS enzyme, and it does in fact act as a competitive inhibitor. Likewise, in Nicotiana tabacum (tobacco), the CaM isoforms NtCaM1 and NtCaM13 are overexpressed in tobacco leaf tissue in response to wounding and the TMV-triggered hypersensitive reaction, respectively (20). Recently, we have addressed the question as to how distinct CaM isoforms can give rise to selectivity in their target regulation by determining the solution structures of the two soybean CaM isoforms, SCaM1 and SCaM4 (21). However, there are currently no structures available for plant CaM isoforms in a complex with a target CaMBD peptide, although many such complex structures have been determined for animal CaM. Therefore, determining the structure of plant CaM-target complexes and uncovering their unique features relative to those of animal CaM or other plant CaM isoforms will undoubtedly enhance our understanding of the CaM-target regulation mechanisms in plants and mammals.The mitogen-activated protein kinase cascade (MAPK cascade) is an important signal transduction pathway in animals, yeast as well as in plants (22). The activity of MAPK is regulated via phosphorylation by its immediate upstream regulator, MAPK kinase (MAPKK). Following activation, MAPKs are dephosphorylated and inactivated by MAPK phosphatases. Recently, the MAPK phosphatase from tobacco (NtMKP1) was shown to be a novel plant-specific CaM-binding protein (23). This finding indicated a possible link between the MAPK cascade and Ca2+ signaling pathways in plant cells. The MAPK cascade is thought to play an important role in plant defense signaling, and the accumulation of Ca2+ in plant cells is also a well-known response to pathogens and other stresses (for recent reviews, see Refs. 24, 25). The putative CaMBD reported for NtMKP1 (residues 396–447) is located directly upstream of the conserved Ser-rich domain in the middle of the protein. Mutagenesis studies have revealed that Trp440 and Leu443 are indispensable for Ca2+-CaM binding. More recently, we have tested various truncated versions of the CaMBD of NtMKP1 and narrowed it down to 12 residues (residues 438–449) (Fig. 1a) that are sufficient for Ca2+-CaM binding (26). Interestingly, the NtMKP1 CaMBD does not belong to any of the typical CaM-binding motif classes. Binding assays using isothermal titration calorimetry (ITC) as well as NMR titration studies for various SCaM isoforms, and their half-lobe fragments have revealed a novel sequential target binding mechanism for the Ca2+-CaM isoforms. The first strong binding event involves the C-lobe of Ca2+-CaM and the reported binding constant for NtMKP1 peptide was 107–108 m−1. On the other hand, the binding of a second CaMBD of NtMKP1 occurs only through the N-lobe of Ca2+-CaM, and the binding constant was around 105 m−1 (26). To date, structural information about the manner in which Ca2+-CaM binds sequentially to the unusual amino acid sequence of the CaMBD of NtMKP1 is unavailable. Here, we have determined the solution NMR structure of the C-lobe fragment of SCaM4 (SCaM4CT) fused with the CaMBD of NtMKP1 (Fig. 1b). We have chosen SCaM4 over other SCaM isoforms, as the stress-induced SCaM4 would provide a more important connection between stress MAPK response and Ca2+ signaling. The interaction of the α-helical CaMBD of NtMKP1 with SCaM4CT domain is stabilized by hydrophobic interactions mainly through Trp440 and Leu443 in the NtMKP1 sequence. Moreover, the basic residue, Arg444 that is unusual at position 5 (Fig. 1a) stays outside of the hydrophobic patch, and it seems to form a unique hydrogen bond to Glu84 of the SCaM4CT domain. The resulting orientation of the α-helical CaMBD relative to the SCaM4CT domain is therefore very different from those seen in the other previously reported Ca2+-CaM-target complexes. We have also studied binding of a synthetic CaMBD peptide to intact Ca2+-SCaM4 fused at the C-terminal end with the CaMBD of NtMKP1 (Fig. 1b) providing additional information about the role of the N-lobe of Ca2+-SCaM4 in NtMKP1 binding. Furthermore, we have studied the interactions between the N-lobe of Ca2+-SCaM4 and a second potential CaMBD in the C-terminal region of NtMKP1.  相似文献   

13.
Ca(2+) binds to calmodulin (CaM) and triggers the interaction of CaM with its target proteins; CaM binding proteins (CaMBPs) can also regulate the metal binding to CaM. In the present paper, La(3+) binding to CaM was studied in the presence of the CaM binding peptides, Mastoparan (Mas) and Mas X, using ultrafiltration and titration of fluorescence. Ca(2+) binding was used as an analog to understand La(3+) binding in intact CaM and isolated N/C-terminal CaM domain of metal-CaM binary system and metal-CaM-CaMBPs ternary system. Mas/Mas X increased binding affinity of La(3+) to CaM by 0.5 approximately 3 orders magnitude. The metal ions binding affinity to the C-terminal or the N-terminal CaM domain suggested that in the first phase of binding process both Ca(2+) and La(3+) bind to C-terminal of CaM in the presence of Mas/Mas X. In the presence of CaM binding peptides, La(3+) binding preference was substantially altered from the metal-CaM binary system where La(3+) slightly preferred binding to the N-terminal sites of CaM. Our results will be helpful in understanding La(3+) interactions with CaM in the biological systems.  相似文献   

14.
Calcium-dependent changes in the internal dynamics and average structures of the opposing globular domains of calmodulin (CaM), as well as their relative spatial arrangement, contribute to the productive association between CaM and a range of different target proteins, affecting their functional activation. To identify dynamic structural changes involving individual alpha-helical elements and their modulation by calcium activation, we have used site-directed mutagenesis to engineer a tetracysteine binding motif within helix A near the amino terminus of calmodulin (CaM), permitting the selective and rigid attachment of the fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH) with full retention of function. The rigid tetracoordinate linkage of FlAsH to CaM, in conjunction with frequency domain fluorescence anisotropy measurements, allows assessment of dynamic changes associated with calcium activation without interference from independent probe motion. Taking advantage of the large fluorescence enhancement associated with binding of FlAsH to CaM, we determined rates of binding of FlAsH to apo-CaM and calcium-activated CaM to be 2800 +/- 80 and 310 +/- 10 M(-)(1) s(-)(1), respectively. There is no difference in the solvent accessibility of the bound FlAsH irrespective of calcium binding to CaM. Thus, given that FlAsH selectively labels disordered structures, the large difference in rates of FlAsH binding indicates that calcium binding stabilizes helix A. Frequency domain anisotropy measurements of bound FlAsH indicate that prior to calcium activation, helix A undergoes large amplitude nanosecond motions. Following calcium activation, helix A becomes immobile, and structurally coupled to the overall rotation of CaM. We discuss these results in the context of a model that suggests stabilization of helix A relative to other domain elements in the CaM structure is critical to defining high-affinity binding clefts, and in promoting specific and ordered binding of the opposing lobes of CaM to target proteins.  相似文献   

15.
A 592-amino acid segment of the regulatory domain of the neuronal type-I inositol 1,4,5-trisphosphate receptor (IP(3)R) isoform (type-I long, amino acids1314-1905) and the corresponding 552-amino acid alternatively spliced form present in peripheral tissues (type-I short, amino acids 1693-1733 deleted) were expressed as glutathione S-transferase fusion proteins. These domains encompass a putative calmodulin (CaM) binding domain and two protein kinase A phosphorylation sites. Both long and short fusion proteins retained the ability to bind CaM in a Ca(2+)-dependent manner as measured by CaM-Sepharose chromatography or a dansyl-CaM fluorescence assay. Both assays indicated that the short fusion protein bound twice the amount of CaM than the long form at saturating concentrations of CaM. In addition, the binding of the short form to CaM-Sepharose was inhibited by phosphorylation with protein kinase A, whereas the binding of the long form was unaffected. Full-length cDNAs encoding type-I long, type-I short, and type-III IP(3)R isoforms were expressed in COS cells, and the Ca(2+) sensitivity of [(3)H]IP(3) binding to permeabilized cells was measured. The type-I long isoform was more sensitive to Ca(2+) inhibition (IC(50) = 0.55 microM) than the type-I short (IC(50) = 5.7 microM) or the type-III isoform (IC(50) = 3 microM). In agreement with studies on the fusion proteins, the full-length type-I short bound more CaM-Sepharose, and this binding was inhibited to a greater extent by protein kinase A phosphorylation than the type-I long IP(3)R. Although type-III IP(3)Rs did not bind directly to CaM-Sepharose, hetero-oligomers of type-I/III IP(3)Rs retained the ability to interact with CaM. We conclude that the deletion of the SII splice site in the type-I IP(3)R results in the differential regulation of the alternatively spliced isoforms by Ca(2+), CaM, and protein kinase A.  相似文献   

16.
Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin   总被引:12,自引:0,他引:12  
Ras activation induces a variety of cellular responses that depend on the specific activated effector, the intensity and amplitude of its activation, and the cellular type. Transient activation followed by a sustained but low signal of the Ras/Raf/MEK/ERK pathway is a common feature of cell proliferation in many systems. On the contrary, sustained, high activation is linked with either senescence or apoptosis in fibroblasts and to differentiation in neurones and PC12 cells. The temporal regulation of the pathway is relevant and not only depends on the specific receptor activated but also on the presence of diverse modulators of the pathway. We review here evidence showing that calcium (Ca(2+)) and calmodulin (CaM) are able to regulate the Ras/Raf/MEK/ERK pathway. CaM-binding proteins (CaMBPs) as Ras-GRF and CaM-dependent protein kinase IV (CaMKIV) positively modulate ERK1/2 activation induced by either NGF or membrane depolarisation in neurones. In fibroblasts, CaM binding to EGF receptor and K-Ras(B) may be involved in the downregulation of the pathway after its activation, allowing a proliferative signalling.  相似文献   

17.
Calmodulin is a Ca(+2)-binding protein important in a variety of cell functions. The Ca(+2)/calmodulin complex interacts with and regulates various enzymes and target proteins, known as calmodulin-binding proteins (CaMBPs). In this study, we revealed a comparative identification of the CaMBPs composition in the worker honeybee (Apis mellifera) brain, considering two different honeybee behaviors in the colony. To this end, the CaMBPs of forager and nurse workers were purified by affinity chromatography, separated in 1D gel, digested and submitted to peptide mass fingerprinting (PMF). In the PMF analysis, 15 different proteins, considered behavior-specific proteins, were identified, one of them exclusively in forager workers and 10 in nurses. All the proteins were classified in terms of their function and cell localization, revealing a greater expression of metabolism-related CaMBPs in both worker subcastes. Protein sequences were then analyzed for the presence of the calmodulin-binding sites. Therefore, the honeybee brain CaMBPs profiles presented differences between worker subcastes. This is the first identification of calmodulin-binding proteins in the brain of A. mellifera upon nursing and foraging behaviors in the colony and this diversity of target proteins for Ca(+2)/CaM may be involved in terms of the function of these proteins in the nervous system.  相似文献   

18.
A new role for IQ motif proteins in regulating calmodulin function   总被引:3,自引:0,他引:3  
IQ motifs are found in diverse families of calmodulin (CaM)-binding proteins. Some of these, like PEP-19 and RC3, are highly abundant in neuronal tissues, but being devoid of catalytic activity, their biological roles are not understood. We hypothesized that these IQ motif proteins might have unique effects on the Ca2+ binding properties of CaM, since they bind to CaM in the presence or absence of Ca2+. Here we show that PEP-19 accelerates by 40 to 50-fold both the slow association and dissociation of Ca2+ from the C-domain of free CaM, and we identify the sites of interaction between CaM and PEP-19 using NMR. Importantly, we demonstrate that PEP-19 can also increase the rate of dissociation of Ca2+ from CaM when bound to intact CaM-dependent protein kinase II. Thus, PEP-19, and presumably similar members of the IQ family of proteins, has the potential to alter the Ca2+-binding dynamics of free CaM and CaM that is bound to other target proteins. Since Ca2+ binding to the C-domain of CaM is the rate-limiting step for activation of CaM-dependent enzymes, the data reveal a new concept of importance in understanding the temporal dynamics of Ca2+-dependent cell signaling.  相似文献   

19.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号