首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+-dependent formate dehydrogenase(s) (EC 1.2.1.2, FDH) catalyzes the interconversion of formate anion to carbon dioxide coupled with the conversion of NAD+ or NADH. FDHs attract significant attention in biotechnology due to their potential applications in NAD(H)-dependent industrial biocatalysis as well as in the production of renewable fuels and chemicals from carbon dioxide. In the present work, a new FDH from thermophilic fungus Myceliophthora thermophile (MtFDH) was characterized. The gene of the enzyme was synthesised, cloned, expressed in E. coli, as 6His-tagged protein, and purified to homogeneity by metal chelate affinity chromatography. Kinetic analysis suggested that MtFDH exhibits higher catalytic efficiency on NaHCO3 compared to formate. Notable, recombinant MtFDH displays a pH optimum for the conversion of formate anion to carbon dioxide at extreme alkaline pH (pH 10.5). Thermal stability analysis showed that the enzyme displays good thermostability with Tm 48 °C. Homology modelling and phylogenetic analysis suggested that the enzyme belongs to the D-specific 2-hydroxy acid dehydrogenases family. The active-site residues are well conserved compared to other homologous FDHs. The results of the present work provide new knowledge on the structure, function and diversity of FDHs and indicate that MtFDH possess a huge potential for CO2 reduction or NADH generation and under extreme alkaline conditions.  相似文献   

2.
Enantiopure l-tert-leucine (l-Tle) was synthesized through reductive amination of trimethylpyruvate catalyzed by cell-free extracts of recombinant Escherichia coli coexpressing leucine dehydrogenase (LeuDH) and formate dehydrogenase (FDH). The leudh gene from Lysinibacillus sphaericus CGMCC 1.1677 encoding LeuDH was cloned and coexpressed with NAD+-dependent FDH from Candida boidinii for NADH regeneration. The batch reaction conditions for the synthesis of l-Tle were systematically optimized. Two substrate feeding modes (intermittent and continuous) were addressed to alleviate substrate inhibition and thus improve the space-time yield. The continuous feeding process was conveniently performed in water at an overall substrate concentration up to 1.5 M, with both conversion and ee of >99% and space-time yield of 786 g L−1 d−1, respectively. Furthermore, the preparation was successfully scaled up to a 1 L scale, demonstrating the developed procedure showed a great industrial potential for the production of enantiopure l-Tle.  相似文献   

3.
In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70 °C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4 °C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP+ as cofactor, and the resultant NADPH can be detected spectrometrically at 340 nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340 nm increased linearly with the increasing l-glutamate concentration within the range of 10  400 μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples.  相似文献   

4.
NAD+-dependent formate dehydrogenase (FDH-EC 1.2.1.2) is an important enzyme to regenerate valuable NADH required by NAD+-dependent oxidoreductases in enzyme catalysis. The limitation in the thermostability of FDH enzyme is a crucial problem for development of biotechnological and industrial processes, despite of its advantages. In this study, to investigate the contribution of surface electrostatic interaction to the thermostability of FDH from Candida methylica (cmFDH) N187E, H13E, Q105R, N300E, N147R N300E/N147R, N187E/Q105R, N187E/N147R,Y160R, Y302R, Y160E and Y302E mutants were designed using a homology model of cmFDH based on Candida boidinii (cb) by considering electrostatic interactions on the protein surface. The effects of site-specific engineering on the stability of this molecule was analyzed according to minimal model of folding and assembly reaction and deduced equilibrium properties of the native system with respect to its thermal and denaturant sensitivities. It was observed that mutations did not change the unfolding pattern of native cmFDH and increased numbers of electrostatic interactions can cause either stabilizing or destabilizing effect on the thermostability of this protein. The thermodynamic and kinetic results suggested that except relatively improved mutants, three out of the nine single mutations increased the melting temperature of cmFDH enzyme.  相似文献   

5.
The formate dehydrogenase (FDH, EC: 1.2. 1.2) from Candida boidinii was found to be inactivated and unstable in the presence of high concentration (>50%) of the water soluble dimethylimidazolium dimethyl phosphate ([MMIm][Me2PO4]) ionic liquid. In order to circumvent this problem, the enzyme was chemically modified by cations usually present in ionic liquids: cholinium (1), hydroxyethyl-methylimidazolium (2) and hydroxypropyl-methylimidazolium (3) cations were activated with carbonyldiimidazole before being reacted with the FDH leading to a heterogeneous population of 6–7 biocatalysts. FDH modified by (1) or (3) led to 3–9 modifications while FDH modified by (2) led to 6 proteins presenting 7–12 grafted cations. Specific activity of the modified enzymes was decreased by a 2.5–3-fold factor (0.10–0.15 μmol min−1 mg−1) compared to the non-modified FDH (0.33 μmol min−1 mg−1) when assayed in carbonate buffer (pH 9.7, 25 mM). After modification, the FDH still present 0.06 μmol min−1 mg−1 in 70% [MMIm][Me2PO4] (v:v) (30–45% of their activity in aqueous buffer) while the native enzyme is inactive at this ionic liquid concentration, proving the efficiency of this strategy. The half-life of the modified enzyme is also increased by a 5-fold factor after modification by (1) (t1/2 of 9 days) and by a 3-fold factor after modification by (2) or (3) (t1/2 of 6 and 5 days respectively) in aqueous solution. When stored in 37.5% [MMIm][Me2PO4] (v:v), both modified and unmodified FDH have an increased half-life (t1/2 of 6–9 days). This grafting strategy is found to be good methods to mimic and study the stabilizing effect of ionic liquids on enzymes.  相似文献   

6.
BackgroundAn amino alcohol dehydrogenase gene (RE_AADH) from Rhodococcus erythropolis BCRC 10909 has been used for the conversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-phenylephrine [(S)-PE]. However RE_AADH uses NADPH as cofactor, and only limited production of (S)-PE from HPMAE is achieved.MethodsA short-chain dehydrogenase/reductase gene (SQ_SDR) from Serratia quinivorans BCRC 14811 was expressed in Escherichia coli BL21 (DE3) for the conversion of HPMAE to (S)-PE.ResultsThe SQ_SDR enzyme was capable of converting HPMAE to (S)-PE in the presence of NADH and NADPH, with specific activities of 26.5 ± 2.3 U/mg protein and 0.24 ± 0.01 U/mg protein, respectively, at 30 °C and at a pH of 7.0. The E. coli BL21 (DE3), expressing NADH-preferring SQ_SDR, converted HPMAE to (S)-PE with more than 99% enantiomeric excess, a conversion yield of 86.6% and a productivity of 20.2 mmol/l h, which was much higher than our previous report using E. coli NovaBlue expressing NADPH-dependent RE_AADH as the biocatalyst.ConclusionThe SQ_SDR enzyme with its high catalytic activity and strong preference for NADH as a cofactor provided a significant advantage in bioreduction.  相似文献   

7.
In this work, two proteins, Z-domains and bovine casein, were autodisplayed on the outer membrane of the same Escherichia coli cells by co-transformation of two different autodisplay vectors. On the basis of SDS-PAGE densitometry, Z-domains and bovine casein were expressed at 3.12 × 105 and 1.55 × 105 proteins/E. coli cell, respectively. The co-autodisplayed Z-domains had antibody-binding activity and the bovine casein had adhesive properties. E. coli with co-autodisplayed proteins were analyzed by fluorescence assisted cell sorting (FACS). E. coli with co-autodisplayed Z-domains and bovine casein aggregated due to hydrophobic interaction. For application to immunoassays, the Z-domain activity was estimated after (1) immobilizing the E. coli and (2) forming an OM layer. E. coli with co-autodisplayed two proteins that were immobilized on a polystyrene microplate had the same antibody-binding activity as did E. coli with autodisplayed Z-domains only. The OM layer from the co-transformed E. coli had Z-domains and bovine casein expressed at a 1:2 ratio from antibody-binding activity measurements.  相似文献   

8.
The inosine monophosphate dehydrogenase (IMPDH) enzyme has been characterized and validated as a molecular drug target in other apicomplexans but not in the genus Babesia. Subsequently, we cloned and expressed a Babesia gibsoni IMPDH (BgIMPDH) cDNA in Escherichia coli. We also determined the inhibitory effect of mycophenolic acid (MPA) on recombinant BgIMPDH (rBgIMPDH) activity and the Babesia-growths in vitro. The translated BgIMPDH peptide contained thirteen amino acid residues responsible for substrate and cofactor binding in its catalytic domain with Gly374 in BgIMPDH being replaced by Ser388 in mammalian IMPDH. The native BgIMPDH enzyme in the parasite was approximately 54-kDa a mass similar to His-tag rBgIMPDH protein. The Km values of the rBgIMPDH were 8.18 ± 0.878 (mean ± standard error of the mean) μM and 360.80 ± 43.41 μM for IMP and NAD+, respectively. MPA inhibited the rBgIMPDH activity yielding a Ki value of 20.93 ± 1.83 μM with respect to NAD+. For Babesia growths, the IC50s were 0.95 ± 0.21 and 2.88 ± 0.49 μM for B. gibsoni and B. bovis, respectively. Therefore, our results suggest that MPA may inhibit the replication of Babesia parasites by targeting IMPDH enzyme of the purine pathway.  相似文献   

9.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

10.
An oxygen-insensitive intracellular enzyme that is responsible for the decolorization of azo dyes was purified from Escherichia coli CD-2. The molecular weight of the purified enzyme was estimated as 27,000 ± 500 Da. Protein identification indicated that the enzyme had high sequence homology with E. coli K12 quinone reductase, and the enzyme was proved to have both azoreductase and quinone reductase activity. With methyl red as substrate, the optimal pH value and temperature were 6.5 and 37 °C, respectively. The enzyme was stable under different physiochemical conditions. The azoreductase activity was restrained by SDS and was almost completely inhibited by Co2+ and Hg2+. Km and Vmax values were 0.18 mM and 8.12 U mg?1 of protein for NADH and 0.05 mM and 6.46 U mg?1 of protein for methyl red, respectively. The purified enzyme could efficiently decolorize methyl red with both NADH and NADPH as electron donors.  相似文献   

11.
An efficient purification system for purifying recombinant Bacillus subtilis 168 catalase (KatA) expressed in Escherichia coli was developed. The basic region containing 252–273 amino acids derived from E. coli ribosomal protein L2 was used as an affinity tag while the small ubiquitin-like modifier (SUMO) was introduced as one specific protease cleavage site between the target protein and the purification tags. L2 (252–273)–SUMO fusion protein purification method can be effectively applied to purify the recombinant catalase using cation exchange resin. This purification procedure was used to purify the KatA and achieved a purification fold of 30.5, a specific activity of 48,227.2 U/mg and an activity recovery of 74.5%. The enzyme showed a Soret peak at 407 nm. The enzyme kept its activity between pH 5 and 10 and between 30 °C and 60 °C, with the highest activity at pH 8.0 and 37 °C. The enzyme displayed an apparent Km of 39.08 mM for hydrogen peroxide. These results agree well with the previous reports about B. subtilis catalase. L2 (252–273)–SUMO fusion protein purification technique provides a novel and effective fusion expression system for the production of recombinant proteins.  相似文献   

12.
In this study we cloned and expressed a small heat shock protein, tpv-HSP 14.3, from thermoacidophilic archaeon Thermoplasma volcanium. This novel recombinant small heat shock protein was purified to homogeneity and produced a protein band of 14.3 kDa on SDS-polyacrylamide gel. Transmission electron microscopy images of the negatively stained tpv-HSP 14.3 samples showed spherical particles of 13 nm diameter. E. coli cells over expressing tpv-HSP 14.3 endowed the cells with some degree of thermotolerance. After exposure to 52 °C for 120 min, survivability of the E. coli cells expressing tpv-HSP 14.3 was approximately 2.5-fold higher than the control cells. As a molecular chaperone tpv-HSP 14.3 enhanced the thermal stabilization of substrate proteins, pig heart citrate synthase and bovine l-glutamic dehdyrogenase, considerably. The highest protection effect of tpv-HSP 14.3 was observed at 47 °C for pig heart citrate synthase; the remaining activity was 5-fold higher than that of the sample without tpv-HSP 14.3. The tpv-sHSP 14.3 prevented inactivation of bovine l-glutamic dehdyrogenase the most effectively at 53 °C; the residual activity was approximately 2-fold higher than that of the sample heated without tpv-HSP 14.3. However, refolding activity of the tpv-HSP 14.3 was relatively weak for the chemically denatured substrate proteins.  相似文献   

13.
Production of recombinant antibody fragments (Fabs) in Escherichia coli has gained interest because of the recognised advantages of this expression system and because Fabs do not require glycosylation. However, more comprehensive studies on the factors that influence expression conditions and product yield are still required for full process development. In this work, the effect of growth temperature on the periplasmatic expression of the 3H6 Fab in E. coli was studied in carbon-limited continuous cultures operated at medium cell densities. Three different temperatures were assayed, namely 37, 33 and 30 °C. Results showed that biomass yield was not affected within this temperature range whilst product yield increased as temperature decreased. Periplasmic Fab secretion corresponded to 30% of the produced Fab protein and its efficiency was irrespective of the process temperature. Moreover, considerable product leakage to the culture supernatant was detected in all cases, ranging from about 40% at 37 °C to almost 70% at 30 °C. Besides, plasmid loss was observed along process time indicating a selective pressure against plasmid-bearing cells. This study supports the potential of continuous cultivations of E. coli at medium cell densities under well controlled conditions as a tool for characterising the impact of environmental parameters and cell physiology under protein production conditions.  相似文献   

14.
Five sources of phytases were used to study their biochemical characteristics. Phytase E was from an original Escherichia coli (E. coli), phytase PI and PG from the transformed Pichia pastoris (P. pastoris) with phytase gene of E. coli, phytase B and R from Aspergillus niger (A. niger). The results showed that the relative phytase activities had no significant changes when temperature was below 60 °C (P>0.05), and then decreased significantly with temperature increasing (P<0.01). The fungal phytase with the phytase gene from A. niger had the higher thermostability than the bacterial phytase with the phytase gene from E. coli; i.e. at 70 °C, 27–58% of phytase activity (compared with 30 °C) was retained for the bacterial phytase, and 73–96% for the fungal phytase; at 90 °C, 20–47% was retained for the bacterial phytase, and 41–52% for the fungal phytase, especially for the most thermostable phytase R (P<0.01). The optimum pH ranges were 3.0–4.5 for the bacterial phytases and 5.0–5.5 for the fungal phytases (P<0.01). When pH levels were 1, 7 and 8, only 3–7% of phytase activity (compared with the maximum phytase activity at a pH point) was retained for both bacterial and fungal phytases. The amount of inorganic P released from soybean meal was significantly increased when the levels of phytase activity in the soybean meal increased from 0 to 1.0 U/g soybean meal (P<0.01), except for phytase PI. The maximum P released was obtained at 1 U/g soybean meal for all five kinds of phytases (P<0.01). The most economical phytase concentration for P released was 0.25 U/g for phytase PI and B, and 0.50–1.0 U/g for phytase PG, E and R. In addition, the linear and non-linear regression models were established to estimate phytase activity and its characteristics very easily and economically.  相似文献   

15.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

16.
《Process Biochemistry》2007,42(5):856-862
N-Acylamino acid racemase (NAAAR) gene of Deinococcus radiodurans BCRC12827 was cloned into expression vector pQE30 to generate pQE-naaar and expressed in recombinant Escherichia coli JM109. The expressed enzyme purified from the crude cell extract of IPTG-induced E. coli JM109 (pQE-naaar) exhibited high racemization activity to N-carbamoyl-l-homophenylalanine (NCa-l-HPA) and N-carbamoyl-d-homophenylalanine (NCa-d-HPA) with specific activities of 1.91 U/mg protein and 1.31 U/mg protein, respectively. To develop a recombinant E. coli whole cell system for the conversion of racemic NCa-HPA to l-homophenylalanine (l-HPA), naaar gene from D. radiodurans and l-N-carbamoylase (LNCA) gene from Bacillus kaustophilus BCRC11223 were cloned and coexpressed in E. coli cells. Recombinant cells treated with 0.5% toluene at 30 °C for 30 min exhibited enhanced NAAAR and LNCA activities, which are about 20- and 60-fold, respectively, higher than those of untreated cells. Using toluene-permeabilized recombinant E. coli cells, a maximal productivity of 7.5 mmol l-HPA/l h with more than 99% yield could be obtained from 150 mmol racemic NCa-HPA. Permeabilized cells also showed considerable stability in the bioconversion process using 10 mmol racemic NCa-HPA as substrate, no significantly decrease in conversion yield for l-HPA was found in the eight cycles.  相似文献   

17.
《Process Biochemistry》2014,49(5):775-782
A novel β-galactosidase gene (Tnap1577) from the hyperthermophilic bacterium Thermotoga naphthophila RUK-10 was cloned and expressed in Escherichia coli BL21 (DE3) cells to produce β-galactosidase. The recombinant β-galactosidase was purified in three steps: heat treatment to deactivate E. coli proteins, Ni-NTA affinity chromatography and Q-sepharose chromatography. The optimum temperatures for the hydrolysis of o-nitrophenyl-β-d-galactoside (o-NPG) and lactose with the recombinant β-galactosidase were found to be 90 °C and 70 °C, respectively. The corresponding optimum pH values were 6.8 and 5.8, respectively. The molecular mass of the enzyme was estimated to be 70 kDa by SDS-PAGE analysis. Thermostability studies showed that the half-lives of the recombinant enzyme at 75 °C, 80 °C, 85 °C and 90 °C were 10.5, 4, 1, and 0.3 h, respectively. Kinetic studies on the recombinant β-galactosidase revealed Km values for the hydrolysis of o-NPG and lactose of 1.31 mM and 1.43 mM, respectively. These values are considerably lower than those reported for other hyperthermophilic β-galactosidases, indicating high intrinsic affinity for these substrates. The recombinant β-galactosidase from Thermotoga naphthophila RUK-10 also showed transglycosylation activity in the synthesis of alkyl galactopyranoside. This additional activity suggests the enzyme has potential for broader biotechnological applications beyond the degradation of lactose.  相似文献   

18.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

19.
A Cu/Zn-superoxide dismutase (SOD) was characterized for the first time from Beauveria bassiana by gene cloning, heterogeneous expression and function analysis. This 154-aa SOD (BbSod1) was deduced from a 465-bp gene cloned, showing 49–96% sequence identity to Cu/Zn-SODs from other 57 fungi. BbSod1 and its form engineered with two site-directed mutations P143S and P145L (BbSod1-Mut) or a fused copper chaperon Lys7 (BbSod1-Lys7) were expressed well in Escherichia coli. Crude extracts and purified BbSod1-Mut from cell cultures exhibited much higher antioxidation activities than the counterparts of BbSod1-Lys7 whereas BbSod1 showed no substantial activity. The engineered enzymes were best induced by overnight incubation at 20 °C in Luria-Bertani medium including 2.5 mM Cu2+, 0.5 mM Zn2+ and 0.5 mM isopropyl-d-thiogalactopyranoside after 5-h growth to log-phase at 37 °C. Our results highlight alternative means to producing highly active fungal Cu/Zn-SOD in E. coli by making use of the two site-directed mutations without chaperon.  相似文献   

20.
《Process Biochemistry》2014,49(6):927-935
The esterase E34Tt (YP_004875.1) from Thermus thermophilus HB27 was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The gene sequence was subcloned into a T-vector, released with the restriction enzymes BamHI and HindIII, ligated to a pET-21d(+) vector, and transferred to E. coli BL21 (DE3) cells. Inducer concentration (isopropyl β-d-1-thiogalactopyranoside, IPTG) and cultivation time before and after induction were optimized. Best results were obtained by adding 0.25 mM IPTG after 8 h of cultivation and maintaining the induction during 4 extra hours. Most of the enzyme (94%) remained membrane-associated and had to be extracted with a detergent. From the membrane crude extract, the His-tagged E34Tt was purified as a dimer (71.8 kDa) in a single purification step by using metal affinity chromatography. The Rosso's model was used to optimize the reaction conditions. E34Tt-His6 was active in a wide temperature (19.7–79.4 °C) and pH range (4.0–9.3), and maximal activity was determined at pH 6.3 and 58.2 °C, which is 10–18 °C higher than the optimal reaction temperature of the previously reported variants expressed in mesophilic yeasts. E34Tt-His6 preferentially hydrolyzed esters with ten carbon atoms, and was highly thermostable (half-life of 107.9 min at 85 °C), suggesting that E34Tt-His6 has potential for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号