首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Phloem translocation rates in field-grown cotton (Gossypium hirsutum L.) dropped from morning to afternoon and continued to decline toward evening, except that recovery occurred following the hottest afternoon when the maximum temperature was 44 C. Water deficits increased from morning to evening, and severity of deficits generally were proportional to daytime heating. Water stress contributed toward reducing translocation but was not always the governing factor. Callose breakdown appeared to be slower than heat-induced synthesis, and in the evening callose still reflected the influence of high afternoon temperatures. Translocation was considerably reduced when about 50% or more of the hypocotyl sieve plates had large amounts of callose. While heat-induced callose may have reduced translocation because of sieve plate pore constriction, temperatures of 39 to 44 C appeared to inhibit an additional component of translocation as well, possibly in the leaf blade.  相似文献   

2.
Effects of Heat Stress on Carbon Transport from Tomato Leaves   总被引:5,自引:0,他引:5  
Export of radioactive carbon from two cultivars of tomato, (Lycopersiconesculentum Mill.) leaves was inhibited in response to heat stress.Increasing temperatures resulted in a marked decrease in leafstarch levels. The depletion of starch concentration in theleaves was primarily due to hydrolysis and an inhibition ofstarch formation. At high temperatures, starch hydrolysis wasinhibited in Roma VF, a heat sensitive cultivar, while Saladette,a heat tolerant cultivar was not similarly affected. Calloseformation was found on phloem sieve tube plates of leaf petiolesexposed to 72 h of high temperatures. More sieve tube plateswere covered with a thicker callose layer in Roma VF than inSaladette. Lycopersicon esculentum (Mill.), tomato, carbon translocation, starch hydrolysis, callose, heat stress  相似文献   

3.
According to an established concept, injury of the phloem triggers local sieve plate occlusion including callose-mediated constriction and, possibly, protein plugging of the sieve pores. Sieve plate occlusion can also be achieved by distant stimuli, depends on the passage of electropotential waves (EPWs), and is reversible in intact plants. The time-course of the wound response was studied in sieve elements of main veins of intact Vicia faba plants using confocal and multiphoton microscopy. Only 15-45 s after burning a leaf tip, forisomes (giant protein bodies specific for legume sieve tubes) suddenly dispersed, as observed at 3-4 cm from the stimulus site. The dispersion was reversible; the forisomes had fully re-contracted 7-15 min after burning. Meanwhile, callose appeared at the sieve pores in response to the heat shock. Callose production reached a maximum after approximately 20 min and was also reversible; callose degraded over the subsequent 1-2 h. The heat induction of both modes of occlusion coincided with the passage of an EPW visualized by electrophysiology or the potential-sensitive dye RH-414. In contrast to burning, cutting of the leaf tip induced neither an EPW nor callose deposition. The data are consistent with a remote-controlled occlusion of sieve plates depending on the longitudinal propagation of an EPW releasing Ca(2+) into the sieve element lumen. It is hypothesized that forisome plugs and callose constriction are removed once the cytosolic calcium level has returned to the initial level in those sieve tubes.  相似文献   

4.
Both intact and cut duckweed plants were prepared for electron microscopy. Plants which are prepared intact do not exhibit callose formation during development of sieve-plate pores. Future pore sites can be recognized by the presence of median cavities that are unassociated with callose platelets. These cavities are first seen in the region of the compound middle lamella and are lined by a plasmalemma. As end walls thicken, the cavities increase in size until open pores of uniform width are formed. Mature sieve plates of intact-prepared plants are also devoid of callose. Fully opened pores are lined by a plasmalemma and are only traversed by an occasional tubule of endoplasmic reticulum. Plants which have been cut prior to fixation possess mature sieve plates containing callose. The pores of developing sieve plates in cut plants exhibit small amounts of callose. Except for the lack of callose, lateral wall connections between sieve elements and contiguous cells are similar in development and mature state to those reported for other species.  相似文献   

5.
The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.Key words: Arabidopsis thaliana, callose, callose synthase, glucan synthase-like, phloem, plasmodesmata, sieve plate  相似文献   

6.
It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.  相似文献   

7.
Callose accumulated in the tissues of boron deficient bean and cotton plants, the extent and distribution of which depended on the species. Sieve plates in the phloem of boron deficient bean were characterized by heavy plugs of callose, while the sieve plates of boron deficient cotton were essentially unaffected. Translocation of 14C was, however, drastically reduced in both plants. It is suggested that callose deposition in boron deficient plants is a secondary effect of cellular damage.  相似文献   

8.
Barley (Hordeum vulgare L.) leaves and intact spinach (Spinacia oleracea L.) chloroplasts were exposed to short-term heating, and the aftereffects of heat treatment on in vitro andin vivo activities of nitrate reductase and noncyclic electron transport associated with nitrite reduction were studied. Heating of leaves at temperatures above 40°C led to a monotonic decrease in nitrate reductase in vitro activity. On the contrary, the in vivo enzyme activity, assayed in intact leaf tissues after 5-min heat treatment, increased 1.5 times upon elevating the pretreatment temperature from 37 to 40°C and gradually decreased at higher temperatures. Noncyclic electron transport related to CO2 fixation in intact chloroplasts decreased gradually after heat exposures above 39°C, unlike the electron transport to nitrite as a terminal acceptor, which was stimulated by heating of intact chloroplast suspensions in the temperature range from 33 to 40°C. The heating at higher temperatures inhibited nitrite photoreduction. It is concluded that the heating of phototrophic cells at sublethal temperatures stimulates the mobilization of inorganic nitrogen and thereby facilitates the repair of thermally induced injuries of proteinaceous cell structures. The stimulation of nitrate reductase activity in vivo at the temperature range 37–40°C provides an evidence for the increase in the availability of reductants in the cytosolic compartment of the leaf cell.  相似文献   

9.
Peterson CA 《Plant physiology》1979,63(6):1170-1174
Callose accumulated on sieve plates of phloem of white bean seedlings exposed to excess Co, Ni, or Zn. The callose deposits ranged in thickness and were most pronounced in midribs of unifoliate leaves and their subtending petioles. Lesser callose deposits were found in stems. Although translocation of 14C was reduced drastically in seedlings exposed to excess metal, no correlation was found between translocated 14C and the amount of callose in the petioles. It is concluded that the inhibition of phloem translocation in seedlings exposed to excess metal is due to effects other than callose deposition.  相似文献   

10.
Summary Seeds of erect and prostrate plants ofTrianthema govindia Buch. ham. ex DC., growing in shade and open respectively, differed significantly in seed weight and percentage germination. Effect of high temperature exposure to these seeds has been studied in view of water depletion, imbibition and seed germination. The seeds of both the types were subjected to temperatures of 40, 50, 60, and 70° C for 24, 48, 96, and 144 hours. The three factors viz., loss of water, water imbibition and germination of seeds were positively correlated to the duration of treatment at different temperatures. A highly significant positive correlation was also observed between moisture depletion and imbibition, and between imbibition and germination. The percentage germination was favoured at 40° C in both the types of seeds and was increased with the increase of treatment duration. However, at higher temperatures (50 and 60° C) the percentage declined while at 70° C the seeds lost their vitality.  相似文献   

11.
Cytokinin proved to be a controlling factor in sieve tube regeneration around wounded collateral bundles in an in vivo system in which the endogenous cytokinin level had been minimized. Both kinetin and zeatin were applied in aqueous solution to the bases of excised, mature internodes of Coleus blumei Benth. that had an active vascular cambium. Each internode also received indoleacetic acid (IAA) in lanolin at its apical end. Under either low (0.1% w/w) or high (1.0% w/w) auxin concentrations, the control internodes (without exogenous cytokinin) exhibited small amounts of sieve tube regeneration. At appropriate concentrations, both kinetin and zeatin induced a significant increase in sieve tube regeneration around the wound. However, the highest concentration of kinetin tested (50 μg/mL) completely inhibited this process. Kinetin was the most effective with high auxin (1.0% IAA), while zeatin was the most effective with low auxin level (0.1% IAA). Kinetin and zeatin showed the strongest promotive effect at 10 μg/mL and 20 μg/mL, respectively. Both cytokinins also induced supplementary phloem regeneration further from the wound surface. In addition to their effects on vascular tissue regeneration, both cytokinins promoted callose production. This was most evident on the sieve plates of the regenerated sieve tube members and on the walls of the parenchyma cells around the wound. The largest deposits of callose were found in both regenerated sieve tube members and parenchyma cells at the highest cytokinin concentration tested (50 μg/mL). The possible role of cytokinin in controlling callose accumulation in the sieve tubes during autumn is discussed.  相似文献   

12.
Silicon (Si) uptake by Poaceae plants has beneficial effects on herbivore defense. Increased plant physical barrier and altered herbivorous feeding behaviors are documented to reduce herbivorous arthropod feeding and contribute to enhanced plant defense. Here, we show that Si amendment to rice (Oryza sativa) plants contributes to reduced feeding in a phloem feeder, the brown planthopper (Nilaparvata lugens, BPH), through modulation of callose deposition. We associated the temporal dynamics of BPH feeding with callose deposition on sieve plates and further with callose synthase and hydrolase gene expression in plants amended with Si. Biological assays revealed that BPH feeding was lower in Si‐amended than in nonamended plants in the early stages post‐BPH infestation. Histological observation showed that BPH infestation triggered fast and strong callose deposition in Si‐amended plants compared with nonamended plants. Analysis using qRT‐PCR revealed that expression of the callose synthase gene OsGSL1 was up‐regulated more and that the callose hydrolase (β‐1,3‐glucanase) gene Gns5 was up‐regulated less in Si‐amended than in nonamended plants during the initial stages of BPH infestation. These dynamic expression levels of OsGSL1 and Gns5 in response to BPH infestation correspond to callose deposition patterns in Si‐amended versus nonamended plants. It is demonstrated here that BPH infestation triggers differential gene expression associated with callose synthesis and hydrolysis in Si‐amended and nonamended rice plants, which allows callose to be deposited more on sieve tubes and sieve tube occlusions to be maintained more thus contributing to reduced BPH feeding on Si‐amended plants.  相似文献   

13.
Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants.  相似文献   

14.
Summary The carpenter beesXylocopa varipuncta maintain thoracic temperatures of 33.0°C to 46.5°C during continuous free flight from 12°C to 40°C. Since the thoracic temperature excess is not constant (decreasing from 24°C at low air temperatures to 6°C at high) the bees are thermoregulating. We document physiological transfer of relatively large amounts of heat to the abdomen and to the head during pre-flight warm-up and during artificial thoracic heating. Most of the temperature increase of the head is due to passive conduction, while that of the abdomen is due to active physiological heat transfer despite a series of convolutions of the aorta in the petiole that anatomically conform to a counter-current heat exchanger. Although the thermoregulatory mechanisms during flight are far from clarified, our data suggest that thermoregulation involves a strong reliance on active convective cooling through increased flight speed.  相似文献   

15.
The secondary phloem of 6 species of woody dicotyledons was examined for the occurrence of callose on the sieve plates of active sieve elements. Fluorescence and bright-field staining methods were used to detect callose. Tissue from the 6 species was killed and fixed in each of 5 solutions. Some tissue of each species was submerged in the killing solutions as quickly as possible, the remainder within 15 min after removal from the tree. In each species, some active sieve elements of the quick-killed tissue gave negative callose reactions. All active sieve elements of the delay-killed tissue gave positive callose reactions. These and other results suggest that the active sieve elements in the secondary phloem of the species studied normally lack callose and that the extent of callose deposition in these cells depended primarily upon the rapidity with which the sieve-element protoplasts were killed after wounding of the phloem. In addition, bright-field observations of sieve plates of large numbers of sieve elements from a seasonal collection of Tilia americana secondary phloem suggest that the active sieve elements normally lack callose during the growing season and that the inactive sieve elements normally possess it (dormancy callose).  相似文献   

16.
D. J. F. Bowling 《Planta》1968,80(1):21-26
Summary The electrical potential difference across the sieve plates in the primary phloem of Vitis vinifera was measured by inserting micro-electrodes into the sieve-tubes. The values obtained ranged from 4–48 mV. The potential across the transverse walls of the phloem fibres was also determined and found to range from I–II mV. These results are discussed in relation to the theory of translocation based on electro-osmosis put forward independently by Fensom and Spanner.  相似文献   

17.
When special precautions were taken to permit killing and fixation of sieve elements before they were cut, sieve pores were found to be open. Companion cells were shown to be highly resistant to freezing injury and less plasmolyzable than phloem parenchyma. Plasmodesmata connected parenchyma to parenchyma, parenchyma to companion cells, and companion cells to sieve elements. Their general absence between parenchyma cells and sieve elements points to a specific role of companion cells in sieve tube functioning. EM studies of these cells revealed an ER system which connects the central core of the plasmodesma to the sieve tube. This system may be responsible for active sucrose transport. Callose was always present on sieve plates of mature functioning sieve elements even with the most rapid killing and fixing possible. Extra callose promoted by heating (45 C) an intact stem segment was found to constrict the sieve pores almost completely. Constriction of plasmodesmata in lateral sieve areas also was evident. Fine structure analysis of the blocking mechanism is in accord with evidence obtained by tracer studies.  相似文献   

18.
The effect of soil heat and autoclaving on labile inorganic P (Bray I), microbial P (P-flush) and on phosphatase activity was studied by heating five forest soils in the laboratory, which simulated the effects of heat during bushfires. Top soil was heated to 60 °C, 120 °C and 250 °C or autoclaved for 30 minutes. Soils were analysed immediately after heating and during seven months of incubation to assess immediate and longer-term effects of heating.Labile inorganic P increased immediately after heating and autoclaving soils, with the highest amount recorded for the 250 °C treatment. Phosphorus associated with microbial biomass decreased with heat, and none or small amounts were detected in soils heated to 250 °C and autoclaved, because high temperatures killed the microbial population. Most of the P released from microbes acted as a source of labile inorganic P in soils low in inorganic P, and some of the released P was fixed by the soil. In one soil high in inorganic labile P and with undetectable amounts of microbial-P, the increase in Bray P on heating could only be assigned to solubilisation of other sources of total P Because high temperatures denature enzymatic proteins, phosphatase activity diminished with the increase in temperature, and no activity was detected in 250 °C and autoclaved soils.Phosphorus released by heating decreased during incubation in three of the five soils studied, approaching values observed in unheated soils. Simultaneously, an increase in microbial P was observed in these heated soils, indicating that the partial recovery of microbial biomass acted as a sink for the decrease in Bray-P measured. Phosphatase activity recovered only partially during incubation of heated soils.  相似文献   

19.
Heating of wheat seedlings (Triticum aestivum L.) for 3 h at 41–42°C (heat hardening) increased the thermal stability of nitrate reductase (NR). After transferring hardened plants to normal temperature, the higher level of thermal stability persisted for 6 days. The heat hardening increased the enzyme stability against the proteolytic effect of trypsin and reduced the rate of NR degradation in extracts. Inhibition of the NR synthesis by transferring plants to a nitrate-free medium resulted in a much lower rate of enzyme degradation in the cells of hardened, as compared to unhardened plants. A short-term heating of seedlings (10 min at 36, 40, and 44°C) increased the ability of NR to reactivate after heat damage. The thermal stability of NR increased only in seedlings that had been hardened at 40 and 44°C, whereas hardening at 36°C did not result in enzyme stabilization. It is concluded that heat hardening (hyperthermia) increases NR stability against a number of inactivating factors (heating, proteolysis,in vitroand in vivo enzyme degradation) and enhances its ability to repair damage induced by heating.  相似文献   

20.
Detachment and incubation of Elodea leaves promoted callose synthesis in all cells, especially in epidermal pits and in sieve tubes. Phloem was detected in the midrib by fluorescent staining of callose induced to form on sieve plates. In EM views of mature sieve elements nucleus and tonoplast were lacking, mictoplasm replaced cytoplasm, mitochondria were fewer in number, and large plastids contained crystalline inclusion bodies. Slime was present as compact aggregates and as individual fibrils in mictoplasm and sieve pores. Deposition of callose is considered in relation to the blockage concept of callose function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号