首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.23 × 109 callable sites from 12 individuals, we confirmed six single nucleotide mutations. We estimated the false negative rate in the experiment by generating synthetic mutations using the empirical distributions of numbers of nonreference bases at heterozygous sites in the offspring. The proportion of synthetic mutations at callable sites that we failed to detect was <1%, implying that the false negative rate was extremely low. Our estimate of the point mutation rate is 2.8 × 10−9 (95% confidence interval = 1.0 × 10−9 − 6.1 × 10−9) per site per generation, which is at the low end of the range of previous estimates, and suggests an effective population size for the species of ∼1.4 × 106. At one site, point mutations were present in two individuals, indicating that there had been a premeiotic mutation cluster, although surprisingly one individual had a G→A transition and the other a G→T transversion, possibly associated with error-prone mismatch repair. We also detected three short deletion mutations and no insertions, giving a deletion mutation rate of 1.2 × 10−9 (95% confidence interval = 0.7 × 10−9 − 11 × 10−9).  相似文献   

2.
G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2 strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCARcells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.  相似文献   

3.
4.
Understanding the mechanisms of resilience of coral reefs to anthropogenic stressors is a critical step toward mitigating their current global decline. Coral–bacteria associations are fundamental to reef health and disease, but direct observations of these interactions remain largely unexplored. Here, we use novel technology, high-speed laser scanning confocal microscopy on live coral (Pocillopora damicornis), to test the hypothesis that corals exert control over the abundance of their associated bacterial communities by releasing (‘shedding'') bacteria from their surface, and that this mechanism can counteract bacterial growth stimulated by organic inputs. We also test the hypothesis that the coral pathogen Vibrio coralliilyticus can evade such a defense mechanism. This first report of direct observation with high-speed confocal microscopy of living coral and its associated bacterial community revealed a layer (3.3–146.8 μm thick) on the coral surface where bacteria were concentrated. The results of two independent experiments showed that the bacterial abundance in this layer was not sensitive to enrichment (5 mg l−1 peptone), and that coral fragments exposed to enrichment released significantly more bacteria from their surfaces than control corals (P<0.01; 35.9±1.4 × 105 cells cm−2 coral versus 1.3±0.5 × 105 cells cm−2 coral). Our results provide direct support to the hypothesis that shedding bacteria may be an important mechanism by which coral-associated bacterial abundances are regulated under organic matter stress. Additionally, the novel ability to watch this ecological behavior in real-time at the microscale opens an unexplored avenue for mechanistic studies of coral–microbe interactions.  相似文献   

5.

Background

Several studies on the association of TNF-alpha (−308 G/A), IL-6 (−174 G/C) and IL-1beta (−511 C/T) polymorphisms with polycystic ovary syndrome (PCOS) risk have reported conflicting results. The aim of the present study was to assess these associations by meta-analysis.

Results

A total of 14 eligible articles (1665 cases/1687 controls) were included in this meta-analysis. The results suggested that there was no obvious association between the TNF-alpha (−308 G/A) polymorphism and PCOS in the overall population or subgroup analysis by ethnicity, Hardy–Weinberg equilibrium (HWE) in controls, genotyping method, PCOS diagnosis criteria, and study sample size. Also, no obvious association was found between the TNF-alpha (−308 G/A) polymorphism and obesity in patients with PCOS (body mass index [BMI] ≥ 25 kg/m2 vs. BMI < 25 kg/m2). Regarding the IL-6 (−174 G/C) polymorphism, also no association was found in the overall population in heterozygote comparison, dominant model, and recessive model. Even though an allelic model (odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.41–0.96) and a homozygote comparison (OR = 0.52, 95% CI = 0.30–0.93) showed that the IL-6 (−174 G/C) polymorphism was marginally associated with PCOS. Further subgroup analysis suggested that the effect size was not significant among HWE in controls (sample size ≤ 200) and genotyping method of pyrosequencing under all genetic models. Similarly, there was no association between the IL-1beta (−511 C/T) polymorphism and PCOS in the overall population or subgroup analysis under all genetic models. Furthermore, no significant association was found between the IL-1beta (−511 C/T) polymorphism and several clinical and biochemical parameters in patients with PCOS.

Conclusions

The results of this meta-analysis suggest that the TNF-alpha (−308 G/A), IL-6 (−174 G/C), and IL-1beta (−511 C/T) polymorphisms may not be associated with PCOS risk. However, further case–control studies with larger sample sizes are needed to confirm our results.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0165-4) contains supplementary material, which is available to authorized users.  相似文献   

6.
The traditional Mediterranean diet (MedDiet) has shown beneficial effects on cognitive decline. Nevertheless, diet–gene interactions have been poorly evaluated. We aimed to investigate diet–gene interaction in the PREDIMED-NAVARRA randomized trial. A total of 522 participants (67 ± 6 years at baseline) enrolled in the PREDIMED-NAVARRA trial were randomly allocated to one of three diets: two MedDiets (supplemented with either extra-virgin olive oil or nuts) or a low-fat diet. They were evaluated with the Mini-Mental State Examination (MMSE) and the Clock Drawing Test (CDT) after 6.5 years of intervention. Subjects were genotyped for CR1-rs3818361, CLU-rs11136000, PICALM-rs3851179 and Apolipoprotein E (ApoE) genes. We studied MedDiet–gene interactions for cognition and assessed the effect of the MedDiet on cognition across different genetic profiles. A significant interaction (p = 0.041) between CLU-rs11136000 and the MedDiet intervention on the MMSE was found with a beneficial effect of MedDiet among carriers of the T minor allele (B = 0.97, 95 % CI 0.45–1.49). Similar effect was observed for CR1-rs3818361, but no significant interaction was observed (p = 0.335). For PICALM-rs3851179, the MedDiet intervention showed a beneficial effect in both genotype groups. No apparent interaction was found for the CDT between intervention and gene variants. Similarly, participants randomly allocated to MedDiet groups, with favorable profiles of CR1, CLU and PICALM genes, significantly improved CDT scores compared to controls with the same genetic profile. Cognitive performance was better for non-ApoE4 and for ApoE4 carriers of MedDiet groups compared to controls, but for CDT performance, we only found statistical significant differences for non-ApoE4 carriers. A MedDiet intervention modulates the effect of genetic factors on cognition. The effect of MedDiet might be greater for subjects with a more favorable genetic profile.  相似文献   

7.
8.
The purpose of this study was to develop a protocol to induce high frequency of callus and subsequent plantlet regeneration for Pseudarthria viscida; an important medicinal plant. The cotyledonary node and young leaf pieces (1 × 0.5 cm, length × breadth) were used as explants for callus induction and subsequent shoot regeneration and adventitious roots induction from the shoots. The best results were achieved on the following media: (1) 96 % callus induction from cotyledonary node explants on MS medium supplemented with 1.5 mgl−1 2, 4 dichlorophenoxyacetic acid (2, 4-D) and 0.5 mgl−1 1-naphthalene acetic acid (NAA), (2) 97 % shoot regeneration from cotyledonary node derived calli with an average of 44.9 shoots per explant on MS medium fortified with 3.0 mgl−1 N6-benzylaminopurine (BA) and 1 mgl−1 NAA,37 (3) 98 % rooting with an average number of 3.3 roots per shoot on MS medium containing indole-3-butyric acid (IBA) or NAA (0.5–4 mgl−1) after 45 days. The plantlets were transferred to the field after acclimatization. Of the 40 plantlets transplanted to the soil, 29 survived (72.5 %).  相似文献   

9.
The evolutionary role of transposable elements (TEs) is still highly controversial. Two key parameters, the transposition rate (u and w, for replicative and non-replicative transposition) and the excision rate (e) are fundamental to understanding their evolution and maintenance in populations. We have estimated u, w and e for six families of TEs (including eight members: IS1, IS2, IS3, IS4, IS5, IS30, IS150 and IS186) in Escherichia coli, using a mutation accumulation (MA) experiment. In this experiment, mutations accumulate essentially at the rate at which they appear, during a period of 80 500 (1610 generations × 50 lines) generations, and spontaneous transposition events can be detected. This differs from other experiments in which insertions accumulated under strong selective pressure or over a limited genomic target. We therefore provide new estimates for the spontaneous rates of transposition and excision in E. coli. We observed 25 transposition and three excision events in 50 MA lines, leading to overall rate estimates of u ∼ 1.15 × 10–5, w ∼ 4 × 10−8 and e ∼ 1.08 × 10−6 (per element, per generation). Furthermore, extensive variation between elements was found, consistent with previous knowledge of the mechanisms and regulation of transposition for the different elements.  相似文献   

10.
Bacopa monniera is an important source of metabolites with pharmaceutical value. It has been regarded as a valuable medicinal plant and its entire commercial requirement is met from wild natural population. Recently, metabolic engineering has emerged as an important solution for sustained supply of assured and quality raw material for the production of active principles. Present report describes efficient in vitro multiplication and transformation method for genetic manipulation of this species. MS medium supplemented with 2 mgl−1 BA and 0.2 mgl−1 IAA was found optimum for maximum shoot regeneration (98.33 %) from in vitro leaves with 2–3 longitudinal cuts. Agrobacterium tumefaciens-mediated transformation method was used for generating transgenic B. monniera plants. Putative transformants were confirmed by GUS assay and PCR based confirmation of hptII gene. DNA blot analysis showed single copy insertion of transgene cassette. An average of 87.5 % of the regenerated shoots were found PCR positive for hptII gene and GUS activity was detected in leaves of transgenic shoots at a frequency of 82.5 % The efficient multiple shoots regeneration system described herein may help in mass production of B. monniera plant. Also, the high frequency transformation protocol described here can be used for genetic engineering of B. monniera for enhancement of its pharmaceutically important metabolites.  相似文献   

11.
Heat shock protein (Hsp) genes are stress-related genes that activate the host immune system during infection. Hsp genes expression in fish, studied during bacterial infections, is mostly confined to Hsp70 and Hsp90. The present study is an expression analysis of seven Hsp genes: Apg2, Hsp90, Hsp70, glucose-regulated protein 78 (Grp78), heat shock cognate 70 (Hsc70), Grp75, and Hsp30 during Aeromonas hydrophila infection in rohu, Labeo rohita. Forty-eight rohu juveniles were challenged with 3 × 107 cfu bacteria per 20 g of body weight intraperitoneally. The expression of these genes was studied in infected liver, anterior kidney, and spleen tissues of rohu at different time periods: 0, 1, 3, 6, 12, 24, 48, 72 h, 7, and 15 days post-infection by qPCR. The Hsp gene modulation was greater in liver as compared to spleen and kidney tissues. Induced expression of Apg2, Hsp90, Grp78, Grp75, and Hsc70 was noticed during peak periods (3 to 24 h post-challenge) of bacterial infectivity. Hsp70 was found to be down-regulated during the process of infection. In contrast to the other six genes, Hsp30 showed a variable expression pattern in all three tissues. Grp78 was found to be the most highly (1,587-fold) expressed gene in liver at 12 h post-challenge. Further, molecular characterization of Grp78 revealed it to be a highly conserved Hsp gene, essential not only during infection but also during early developmental stages of rohu, and its expression was noticed in all organs studied except in gill tissues, which indicated its potential immune regulatory role during infection process.  相似文献   

12.
Mutations beneficial in one environment may cause costs in different environments, resulting in antagonistic pleiotropy. Here, we describe a novel form of antagonistic pleiotropy that operates even within the same environment, where benefits and deleterious effects exhibit themselves at different growth rates. The fitness of hfq mutations in Escherichia coli affecting the RNA chaperone involved in small-RNA regulation is remarkably sensitive to growth rate. E. coli populations evolving in chemostats under nutrient limitation acquired beneficial mutations in hfq during slow growth (0.1 h−1) but not in populations growing sixfold faster. Four identified hfq alleles from parallel populations were beneficial at 0.1 h−1 and deleterious at 0.6 h−1. The hfq mutations were beneficial, deleterious or neutral at an intermediate growth rate (0.5 h−1) and one changed from beneficial to deleterious within a 36 min difference in doubling time. The benefit of hfq mutations was due to the greater transport of limiting nutrient, which diminished at higher growth rates. The deleterious effects of hfq mutations at 0.6 h−1 were less clear, with decreased viability a contributing factor. The results demonstrate distinct pleiotropy characteristics in the alleles of the same gene, probably because the altered residues in Hfq affected the regulation of expression of different genes in distinct ways. In addition, these results point to a source of variation in experimental measurement of the selective advantage of a mutation; estimates of fitness need to consider variation in growth rate impacting on the magnitude of the benefit of mutations and on their fitness distributions.  相似文献   

13.
A Gram negative, yellow pigmented, rod shaped bacterium designated as RLT was isolated from a hot water spring (90–98 °C) located at Manikaran in Northern India. The isolate grows at 60–80 °C (optimum, 70 °C) and at pH 7.0–9.0 (optimum pH 7.2). Phylogenetic analysis of 16S rRNA gene sequences and levels of DNA–DNA relatedness together indicate that the new isolate represents a novel species of the genus Thermus with closest affinity to Thermus thermophilus HB8T (99.5 %) followed by Thermus arciformis (96.4 %). A comparative analysis of partial sequences of housekeeping genes (HKG) further revealed that strain RLT is a novel species belonging to the genus Thermus. The melting G+C content of strain RLT was calculated as 68.7 mol%. The DNA–DNA relatedness value of strain RLT with its nearest neighbours (>97 %) was found to be less than 70 % indicating that strain RLT represents a novel species of the genus Thermus. MK-8 was the predominant respiratory quinone. The presence of characteristic phospholipid and glycolipid further confirmed that strain RLT belongs to the genus Thermus. The predominant fatty acids of strain RLT were iso-C17:0 (23.67 %) and iso-C15:0 (24.50 %). The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished strain RLT from its closely related species. Thus, strain RLT represents a novel species of the genus Thermus for which the name Thermus parvatiensis is proposed (=DSM 21745T= MTCC 8932T).

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0538-4) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
Memory deficits are common during aging, but little is known about the impact of environmental and genetic variables on memory. The genes SLC30A3 and SEP15 are, respectively, responsible for transporting zinc and selenium, micronutrients that are neuroprotective agents. The aim of this study was to investigate the effect of nutrigenetic interactions on the memory scores of volunteers more than 50 years old. For this cross-sectional study, 240 individuals were enrolled. Micronutrient dosage was determined using atomic absorption spectrophotometry. The SNPs rs5859, rs5854, and rs561104 in SEP15 and rs73924411 and rs11126936 in SLC30A3 were determined by real-time PCR. The evaluations of verbal and visual memory were performed using the Weschler Memory Scale-revised and the Rey’s verbal learning test. A gene versus nutrient interaction was observed for SLC30A3 rs73924411 and zinc concentration. Carriers of the T allele had higher scores for short-term and long-term verbal memories than CC homozygotes only when zinc serum concentration was below the recommended level (p value for the interaction for short-term verbal memory = 0.011, p value for the interaction for long-term verbal memory = 0.039). For SEP15, C carriers of the rs5845 SNP allele had higher verbal learning memory scores than TT homozygotes (0.13 ± 1.13 vs. −1.10 ± 1.20, p = 0.034). Our results suggest the influence of genetic polymorphisms on memory score and identify gene versus nutrient interactions between zinc serum concentration and memory score.  相似文献   

16.
Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic–pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 105 nauplii m−2 emerged from sediment turned oxic compared with 0.02 × 105 m−2 from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic–pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.  相似文献   

17.
18.
Penicillium ochrochloron MTCC 517 is a potent producer of chitinolytic enzymes. Novozyme 234, traditional enzyme cocktail for protoplast generation is not available in the market. So, new enzyme cocktail is prepared for protoplast formation from various filamentous fungi which consists of 5 mg ml−1 lysing enzymes from Trichoderma harzianum, 0.06 mg ml−1 β-glucuronidase from Helix pomatia and 1 mg ml−1P. ochrochloron chitinase. The greatest number of protoplasts could be produced from most of the fungi in 0.8 M sorbitol and by incubation for about 2 h at 37 °C, but the number was decreased by incubation for more than 3 h. About twice as many protoplasts were produced from different species of fungi by involvement of P. ochrochloron chitinase than with combined commercial enzymes.  相似文献   

19.
Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400–700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400–700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400–700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g−1 f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g−1 f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g−1 f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all tested plants. From the results obtained, it is suggested that proline can protect cells against damage induced by ultraviolet radiation. Statistically, the variations of the studied metabolic activities were significant due to UV radiation treatment in shoot and root system of all investigated plant species.  相似文献   

20.
A voltage-gated K+ conductance resembling that of the human ether-à-go-go-related gene product (HERG) was studied using whole-cell voltage-clamp recording, and found to be the predominant conductance at hyperpolarized potentials in a cell line (MLS-9) derived from primary cultures of rat microglia. Its behavior differed markedly from the classical inward rectifier K+ currents described previously in microglia, but closely resembled HERG currents in cardiac muscle and neuronal tissue. The HERG-like channels opened rapidly on hyperpolarization from 0 mV, and then decayed slowly into an absorbing closed state. The peak K+ conductance–voltage relation was half maximal at −59 mV with a slope factor of 18.6 mV. Availability, assessed by a hyperpolarizing test pulse from different holding potentials, was more steeply voltage dependent, and the midpoint was more positive (−14 vs. −39 mV) when determined by making the holding potential progressively more positive than more negative. The origin of this hysteresis is explored in a companion paper (Pennefather, P.S., W. Zhou, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:795–805). The pharmacological profile of the current differed from classical inward rectifier but closely resembled HERG. Block by Cs+ or Ba2+ occurred only at millimolar concentrations, La3+ blocked with K i = ∼40 μM, and the HERG-selective blocker, E-4031, blocked with K i = 37 nM. Implications of the presence of HERG-like K+ channels for the ontogeny of microglia are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号