首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Exosomes have recently emerged as a pivotal mediator of many physiological and pathological processes. However, the role of exosomes in proliferative vitreoretinopathy (PVR) has not been reported. In this study, we aimed to investigate the role of exosomes in PVR. Transforming growth factor beta 2 (TGFß‐2) was used to induce epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, as an in vitro model of PVR. Exosomes from normal and EMTed RPE cells were extracted and identified. We incubated extracted exosomes with recipient RPE cells, and co‐cultured EMTed RPE cells and recipient RPE cells in the presence of the exosome inhibitor GW4869. Both experiments suggested that there are further EMT‐promoting effects of exosomes from EMTed RPE cells. MicroRNA sequencing was also performed to identify the miRNA profiles in exosomes from both groups. We identified 34 differentially expressed exosomal miRNAs (P <. 05). Importantly, miR‐543 was found in exosomes from EMTed RPE cells, and miR‐543‐enriched exosomes significantly induced the EMT of recipient RPE cells. Our study demonstrates that exosomal miRNA is differentially expressed in RPE cells during EMT and that these exosomal miRNAs may play pivotal roles in EMT induction. Our results highlight the importance of exosomes as cellular communicators within the microenvironment of PVR.  相似文献   

3.
4.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

5.
Exosomes, biologically active nanoparticles (40–100 nm) released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA). Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72) and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS) activation of alpha-1 adrenergic receptors (ADRs), since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.  相似文献   

6.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

7.
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.  相似文献   

8.
目的:探讨尿液外泌小体(exosomes)中微小RNA(miRNA,miR)的变化与肾纤维化的关系,以寻找早期诊断肾纤维化的生物标志物。方法:以行肾穿刺活检术并诊断为原发性肾脏病的患者为研究对象,其中,肾活检未发现肾纤维化的患者作为对照组,而存在轻到中度肾纤维化的患者作为纤维化组。收集20 m L晨尿,用超速离心方法分离尿液exosomes,用电镜观察其形态,用定量PCR方法检测其中miRNA的含量,并分析其与肾纤维化的关系。结果:超速离心获得的尿液沉淀物呈现exosomes的形态学特征。miR-21、miR-29b、miR-29c、miR-30e、miR-192、miR-200a、miR-200c和miR-429可在所有患者的尿液exosomes中被检出,但含量存在较大差异。与对照组相比,纤维化组患者尿液exosomes中,miR-21、miR-29b、miR-30e和miR-200c的含量显著增高,miR-29c的含量显著下降,而miR-192、miR-200a和miR-429的含量无显著变化。尿液exosomes中miRNA含量与纤维化肾组织中miRNA表达量的变化并不完全一致。结论:尿液exosomes中miR-29c和miR-21的含量在肾纤维化的病变中发生显著改变,可能成为早期诊断肾纤维化的生物标志物。  相似文献   

9.
There is an increasing interest in using microRNAs (miRNA) as biomarkers in autoimmune diseases. They are easily accessible in many body fluids but it is controversial if they are circulating freely or are encapsulated in microvesicles, particularly exosomes. We investigated if the majority of miRNas in serum and saliva are free-circulating or concentrated in exosomes. Exosomes were isolated by ultracentrifugation from fresh and frozen human serum and saliva. The amount of selected miRNAs extracted from the exosomal pellet and the exosome-depleted serum and saliva was compared by quantitative RT-PCR. Some miRNAs tested are ubiquitously expressed, others were previously reported as biomarkers. We included miRNAs previously reported to be free circulating and some thought to be exosome specific. The purity of exosome fraction was confirmed by electronmicroscopy and western blot. The concentration of miRNAs was consistently higher in the exosome pellet compared to the exosome-depleted supernatant. We obtained the same results using an equal volume or equal amount of total RNA as input of the RT-qPCR. The concentration of miRNA in whole, unfractionated serum, was between the exosomal pellet and the exosome-depleted supernatant. Selected miRNAs, which were detectable in exosomes, were undetectable in whole serum and the exosome-depleted supernantant. Exosome isolation improves the sensitivity of miRNA amplification from human biologic fluids. Exosomal miRNA should be the starting point for early biomarker studies to reduce the probability of false negative results involving low abundance miRNAs that may be missed by using unfractionated serum or saliva.  相似文献   

10.
The aim of the current study was to compare the expression of microRNAs (miRNAs) in exosomes derived from human bone mesenchymal stem cells (hBMSCs) with and without chondrogenic induction. Exosomes derived from hBMSCs were isolated and identified. Microarray analysis was performed to compare miRNA expression between exosomes derived from hBMSCs with and without chondrogenic induction, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs. hBMSCs were transfected with miRNA mimic to extract miRNA-overexpressed exosomes. The results showed that most exosomes exhibited a cup-shaped or round-shaped morphology with a diameter of approximately 50-200 nm and expressed CD9 and CD63. We detected 141 miRNAs that were differentially expressed with and without chondrogenic induction by over a twofold change, including 35 upregulated miRNAs, such as miR-1246, miR-1290, miR-193a-5p, miR-320c, and miR-92a, and 106 downregulated miRNAs, such as miR-377-3p and miR-6891-5p. qRT-PCR analysis validated these results. Exosomes derived from hBMSCs overexpressing miR-320c were more efficient than normal exosomes derived from control hBMSCs at promoting osteoarthritis chondrocyte proliferation, down-regulated matrix metallopeptidase 13 and up-regulated (sex determining region Y)-box 9 expression during hBMSC chondrogenic differentiation. In conclusion, we identified a group of upregulated miRNAs in exosomes derived from hBMSCs with chondrogenic induction that may play an important role in mesenchymal stem cell-derived exosomes in cartilage regeneration and, ultimately, the treatment of arthritis. We demonstrated the potential of these modified exosomes in the development of novel therapeutic strategies.  相似文献   

11.
12.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

13.
Secreted microRNAs (miRNAs) enclosed within extracellular vesicles (EVs) play a pivotal role in intercellular communication by regulating recipient cell gene expression and affecting target cell function. Here, we report the isolation of three distinct EV subtypes from the human colon carcinoma cell line LIM1863 – shed microvesicles (sMVs) and two exosome populations (immunoaffinity isolated A33-exosomes and EpCAM-exosomes). Deep sequencing of miRNA libraries prepared from parental LIM1863 cells/derived EV subtype RNA yielded 254 miRNA identifications, of which 63 are selectively enriched in the EVs - miR-19a/b-3p, miR-378a/c/d, and miR-577 and members of the let-7 and miR-8 families being the most prominent. Let-7a-3p*, let-7f-1-3p*, miR-451a, miR-574-5p*, miR-4454 and miR-7641 are common to all EV subtypes, and 6 miRNAs (miR-320a/b/c/d, miR-221-3p, and miR-200c-3p) discern LIM1863 exosomes from sMVs; miR-98-5p was selectively represented only in sMVs. Notably, A33-Exos contained the largest number (32) of exclusively-enriched miRNAs; 14 of these miRNAs have not been reported in the context of CRC tissue/biofluid analyses and warrant further examination as potential diagnostic markers of CRC. Surprisingly, miRNA passenger strands (star miRNAs) for miR-3613-3p*, -362-3p*, -625-3p*, -6842-3p* were the dominant strand in A33-Exos, the converse to that observed in parental cells. This finding suggests miRNA biogenesis may be interlinked with endosomal/exosomal processing.  相似文献   

14.
MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.  相似文献   

15.
Unilateral ischemia reperfusion injury (UIRI) with longer ischemia time is associated with an increased risk of acute renal injury and chronic kidney disease. Exosomes can transport lipid, protein, mRNA, and miRNA to corresponding target cells and mediate intercellular information exchange. In this study, we aimed to investigate whether exosome-derived miRNA mediates epithelial-mesenchymal cell communication relevant to renal fibrosis after UIRI. The secretion of exosomes increased remarkably in the kidney after UIRI and in rat renal tubular epithelium cells (NRK-52E) after hypoxia treatment. The inhibition of exosome secretion by Rab27a knockout or GW4869 treatment ameliorates renal fibrosis following UIRI in vivo. Purified exosomes from NRK-52E cells after hypoxia treatment could activate rat kidney fibroblasts (NRK-49F). The inhibition of exosome secretion in hypoxic NRK-52E cells through Rab27a knockdown or GW4869 treatment abolished NRK-49F cell activation. Interestingly, exosomal miRNA array analysis revealed that miR-150-5p expression was increased after hypoxia compared with the control group. The inhibition of exosomal miR-150-5p abolished the ability of hypoxic NRK-52E cells to promote NRK-49F cell activation in vitro, injections of miR-150-5p enriched exosomes from hypoxic NRK-52E cells aggravated renal fibrosis following UIRI, and renal fibrosis after UIRI was alleviated by miR-150-5p-deficient exosome in vivo. Furthermore, tubular cell-derived exosomal miR-150-5p could negatively regulate the expression of suppressor of cytokine signaling 1 to activate fibroblast. Thus, our results suggest that the blockade of exosomal miR-150-5p mediated tubular epithelial cell-fibroblast communication may provide a novel therapeutic target to prevents UIRI progression to renal fibrosis.  相似文献   

16.
Melanoma is an aggressive cancer that is highly resistance to therapies once metastasized. We studied microRNA (miRNA) expression in clinical melanoma subtypes and evaluated different miRNA signatures in the background of gain of function somatic and inherited mutations associated with melanoma. Total RNA from 42 patient derived primary melanoma cell lines and three independent normal primary melanocyte cell cultures was evaluated by miRNA array. MiRNA expression was then analyzed comparing subtypes and additional clinicopathologic criteria including somatic mutations. The prevalence and association of an inherited variant in a miRNA binding site in the 3′UTR of the KRAS oncogene, referred to as the KRAS-variant, was also evaluated. We show that seven miRNAs, miR-142-3p, miR-486, miR-214, miR-218, miR-362, miR-650 and miR-31, were significantly correlated with acral as compared to non-acral melanomas (p < 0.04). In addition, we discovered that the KRAS-variant was enriched in non-acral melanoma (25%), and that miR-137 under expression was significantly associated with melanomas with the KRAS-variant. Our findings indicate that miRNAs are differentially expressed in melanoma subtypes and that their misregulation can be impacted by inherited gene variants, supporting the hypothesis that miRNA misregulation reflects biological differences in melanoma.Key words: melanoma, microRNA profiling, biomarker, acral, KRAS-variant, SNP  相似文献   

17.
Background: Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease.Methods: Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR.Results: We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling.Conclusions: Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.  相似文献   

18.
Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P < 0.05), and then its levels in housed and grazing cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P < 0.05). In contrast, the miR-451 level was up-regulated in the grazing cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis.  相似文献   

19.
Prion diseases are transmissible neurodegenerative disorders affecting both humans and animals. The cellular prion protein, PrPC, and the abnormal infectious form, PrPSc, are found associated with exosomes, which are small 50–130 nm vesicles released from cells. Exosomes also contain microRNAs (miRNAs), a class of non-coding RNA, and have been utilized to identify miRNA signatures for diagnosis of disease. While some miRNAs are deregulated in prion-infected brain tissue, the role of miRNA in circulating exosomes released during prion disease is unknown. Here, we investigated the miRNA profile in exosomes released from prion-infected neuronal cells. We performed the first small RNA deep sequencing study of exosomes and demonstrated that neuronal exosomes contain a diverse range of RNA species including retroviral RNA repeat regions, messenger RNA fragments, transfer RNA fragments, non-coding RNA, small nuclear RNA, small nucleolar RNA, small cytoplasmic RNA, silencing RNA as well as known and novel candidate miRNA. Significantly, we show that exosomes released by prion-infected neuronal cells have increased let-7b, let-7i, miR-128a, miR-21, miR-222, miR-29b, miR-342-3p and miR-424 levels with decreased miR-146 a levels compared to non-infected exosomes. Overall, these results demonstrate that circulating exosomes released during prion infection have a distinct miRNA signature that can be utilized for diagnosis and understanding pathogenic mechanisms in prion disease.  相似文献   

20.
Exosomal microRNAs (miRNAs) have great potentials as a novel biomarker to predict lung cancer. We applied a miRNA microarray to identify aberrantly expressed serum exosomal miRNAs as candidate biomarkers for patients with lung adenocarcinoma (LUAD). Compared with the normal control, 31 exosomal miRNAs were found to be upregulated and 29 exosomal miRNAs were downregulated in the serum of LUAD respectively. Then, 10 dysregulated exosomal miRNAs expression levels in serum were further validated via qRT-polymerase chain reaction. Notably, exosomal miR-7977 was highest expressed and miR-98-3p was lowest expressed in the patients with LUAD, and exosomal miR-7977 showed significant correlation with the N stage and TNM stage with patients with LUAD (P < .05). Receiver operating characteristic curve showed that the abundant level of exosomal miR-7977 may predict LUAD with an area of under the curve (AUC) of 0.787. In comparison with exosomal miR-7977, exosomal miR-98-3p had a smaller area (0.719). The combination of exosomal miR-7977 and miR-98-3p improved the AUC to 0.816. Furthermore, in vitro experiments revealed that inhibition of miR-7977 enhanced the proliferation, invasion, and inhibited apoptosis in A549 cells, the opposite results were performed by miR-7977 mimics. In conclusion, exosomal miR-7977 was identified as a novel biomarker for patients with LUAD and may play as a tumor suppressor in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号