首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nathan P. Lemoine 《Oikos》2019,128(7):912-928
Throughout the last two decades, Bayesian statistical methods have proliferated throughout ecology and evolution. Numerous previous references established both philosophical and computational guidelines for implementing Bayesian methods. However, protocols for incorporating prior information, the defining characteristic of Bayesian philosophy, are nearly nonexistent in the ecological literature. Here, I hope to encourage the use of weakly informative priors in ecology and evolution by providing a ‘consumer's guide’ to weakly informative priors. The first section outlines three reasons why ecologists should abandon noninformative priors: 1) common flat priors are not always noninformative, 2) noninformative priors provide the same result as simpler frequentist methods, and 3) noninformative priors suffer from the same high type I and type M error rates as frequentist methods. The second section provides a guide for implementing informative priors, wherein I detail convenient ‘reference’ prior distributions for common statistical models (i.e. regression, ANOVA, hierarchical models). I then use simulations to visually demonstrate how informative priors influence posterior parameter estimates. With the guidelines provided here, I hope to encourage the use of weakly informative priors for Bayesian analyses in ecology. Ecologists can and should debate the appropriate form of prior information, but should consider weakly informative priors as the new ‘default’ prior for any Bayesian model.  相似文献   

2.
The discrete coefficient of determination (CoD) measures the nonlinear interaction between discrete predictor and target variables and has had far-reaching applications in Genomic Signal Processing. Previous work has addressed the inference of the discrete CoD using classical parametric and nonparametric approaches. In this paper, we introduce a Bayesian framework for the inference of the discrete CoD. We derive analytically the optimal minimum mean-square error (MMSE) CoD estimator, as well as a CoD estimator based on the Optimal Bayesian Predictor (OBP). For the latter estimator, exact expressions for its bias, variance, and root-mean-square (RMS) are given. The accuracy of both Bayesian CoD estimators with non-informative and informative priors, under fixed or random parameters, is studied via analytical and numerical approaches. We also demonstrate the application of the proposed Bayesian approach in the inference of gene regulatory networks, using gene-expression data from a previously published study on metastatic melanoma.  相似文献   

3.
Bayesian inference of mixed models in quantitative genetics of crop species   总被引:1,自引:0,他引:1  
The objectives of this study were to implement a Bayesian framework for mixed models analysis in crop species breeding and to exploit alternatives for informative prior elicitation. Bayesian inference for genetic evaluation in annual crop breeding was illustrated with the first two half-sib selection cycles in a popcorn population. The Bayesian framework was based on the Just Another Gibbs Sampler software and the R2jags package. For the first cycle, a non-informative prior for the inverse of the variance components and an informative prior based on meta-analysis were used. For the second cycle, a non-informative prior and an informative prior defined as the posterior from the non-informative and informative analyses of the first cycle were used. Regarding the first cycle, the use of an informative prior from the meta-analysis provided clearly distinct results relative to the analysis with a non-informative prior only for the grain yield. Regarding the second cycle, the results for the expansion volume and grain yield showed differences among the three analyses. The differences between the non-informative and informative prior analyses were restricted to variance components and heritability. The correlations between the predicted breeding values from these analyses were almost perfect.  相似文献   

4.
Using a four-taxon example under a simple model of evolution, we show that the methods of maximum likelihood and maximum posterior probability (which is a Bayesian method of inference) may not arrive at the same optimal tree topology. Some patterns that are separately uninformative under the maximum likelihood method are separately informative under the Bayesian method. We also show that this difference has impact on the bootstrap frequencies and the posterior probabilities of topologies, which therefore are not necessarily approximately equal. Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429-13434, 1996) stated that bootstrap frequencies can, under certain circumstances, be interpreted as posterior probabilities. This is true only if one includes a non-informative prior distribution of the possible data patterns, and most often the prior distributions are instead specified in terms of topology and branch lengths. [Bayesian inference; maximum likelihood method; Phylogeny; support.].  相似文献   

5.
Millar RB 《Biometrics》2004,60(2):536-542
Priors are seldom unequivocal and an important component of Bayesian modeling is assessment of the sensitivity of the posterior to the specified prior distribution. This is especially true in fisheries science where the Bayesian approach has been promoted as a rigorous method for including existing information from previous surveys and from related stocks or species. These informative priors may be highly contested by various interest groups. Here, formulae for the first and second derivatives of Bayes estimators with respect to hyper-parameters of the joint prior density are given. The formula for the second derivative provides a correction to a previously published result. The formulae are shown to reduce to very convenient and easily implemented forms when the hyper-parameters are for exponential family marginal priors. For model parameters with such priors it is shown that the ratio of posterior variance to prior variance can be interpreted as the sensitivity of the posterior mean to the prior mean. This methodology is applied to a nonlinear state-space model for the biomass of South Atlantic albacore tuna and sensitivity of the maximum sustainable yield to the prior specification is examined.  相似文献   

6.
Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.)Hook.) plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF). Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc.) on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.  相似文献   

7.
The measurement of biallelic pair-wise association called linkage disequilibrium (LD) is an important issue in order to understand the genomic architecture. A plethora of measures of association in two by two tables have been proposed in the literature. Beside the problem of choosing an appropriate measure, the problem of their estimation has been neglected in the literature. It needs to be emphasized that the definition of a measure and the choice of an estimator function for it are conceptually unrelated tasks. In this paper, we compare the performance of various estimators for the three popular LD measures D', r and Y in a simulation study for small to moderate samples sizes (N<=500). The usual frequency-plug-in estimators can lead to unreliable or undefined estimates. Estimators based on the computationally expensive volume measures have been proposed recently as a remedy to this well-known problem. We confirm that volume estimators have better expected mean square error than the naive plug-in estimators. But they are outperformed by estimators plugging-in easy to calculate non-informative Bayesian probability estimates into the theoretical formulae for the measures. Fully Bayesian estimators with non-informative Dirichlet priors have comparable accuracy but are computationally more expensive. We recommend the use of non-informative Bayesian plug-in estimators based on Jeffreys' prior, in particular when dealing with SNP array data where the occurrence of small table entries and table margins is likely.  相似文献   

8.
Bayesian phylogenetic methods require the selection of prior probability distributions for all parameters of the model of evolution. These distributions allow one to incorporate prior information into a Bayesian analysis, but even in the absence of meaningful prior information, a prior distribution must be chosen. In such situations, researchers typically seek to choose a prior that will have little effect on the posterior estimates produced by an analysis, allowing the data to dominate. Sometimes a prior that is uniform (assigning equal prior probability density to all points within some range) is chosen for this purpose. In reality, the appropriate prior depends on the parameterization chosen for the model of evolution, a choice that is largely arbitrary. There is an extensive Bayesian literature on appropriate prior choice, and it has long been appreciated that there are parameterizations for which uniform priors can have a strong influence on posterior estimates. We here discuss the relationship between model parameterization and prior specification, using the general time-reversible model of nucleotide evolution as an example. We present Bayesian analyses of 10 simulated data sets obtained using a variety of prior distributions and parameterizations of the general time-reversible model. Uniform priors can produce biased parameter estimates under realistic conditions, and a variety of alternative priors avoid this bias.  相似文献   

9.
Bayesian inference allows the transparent communication and systematic updating of model uncertainty as new data become available. When applied to material flow analysis (MFA), however, Bayesian inference is undermined by the difficulty of defining proper priors for the MFA parameters and quantifying the noise in the collected data. We start to address these issues by first deriving and implementing an expert elicitation procedure suitable for generating MFA parameter priors. Second, we propose to learn the data noise concurrent with the parametric uncertainty. These methods are demonstrated using a case study on the 2012 US steel flow. Eight experts are interviewed to elicit distributions on steel flow uncertainty from raw materials to intermediate goods. The experts' distributions are combined and weighted according to the expertise demonstrated in response to seeding questions. These aggregated distributions form our model parameters' informative priors. Sensible, weakly informative priors are adopted for learning the data noise. Bayesian inference is then performed to update the parametric and data noise uncertainty given MFA data collected from the United States Geological Survey and the World Steel Association. The results show a reduction in MFA parametric uncertainty when incorporating the collected data. Only a modest reduction in data noise uncertainty was observed using 2012 data; however, greater reductions were achieved when using data from multiple years in the inference. These methods generate transparent MFA and data noise uncertainties learned from data rather than pre-assumed data noise levels, providing a more robust basis for decision-making that affects the system.  相似文献   

10.
Considerable effort has been devoted to the estimation of species interaction strengths. This effort has focused primarily on statistical significance testing and obtaining point estimates of parameters that contribute to interaction strength magnitudes, leaving the characterization of uncertainty associated with those estimates unconsidered. We consider a means of characterizing the uncertainty of a generalist predator’s interaction strengths by formulating an observational method for estimating a predator’s prey-specific per capita attack rates as a Bayesian statistical model. This formulation permits the explicit incorporation of multiple sources of uncertainty. A key insight is the informative nature of several so-called non-informative priors that have been used in modeling the sparse data typical of predator feeding surveys. We introduce to ecology a new neutral prior and provide evidence for its superior performance. We use a case study to consider the attack rates in a New Zealand intertidal whelk predator, and we illustrate not only that Bayesian point estimates can be made to correspond with those obtained by frequentist approaches, but also that estimation uncertainty as described by 95% intervals is more useful and biologically realistic using the Bayesian method. In particular, unlike in bootstrap confidence intervals, the lower bounds of the Bayesian posterior intervals for attack rates do not include zero when a predator–prey interaction is in fact observed. We conclude that the Bayesian framework provides a straightforward, probabilistic characterization of interaction strength uncertainty, enabling future considerations of both the deterministic and stochastic drivers of interaction strength and their impact on food webs.  相似文献   

11.
To study lifetimes of certain engineering processes, a lifetime model which can accommodate the nature of such processes is desired. The mixture models of underlying lifetime distributions are intuitively more appropriate and appealing to model the heterogeneous nature of process as compared to simple models. This paper is about studying a 3-component mixture of the Rayleigh distributionsin Bayesian perspective. The censored sampling environment is considered due to its popularity in reliability theory and survival analysis. The expressions for the Bayes estimators and their posterior risks are derived under different scenarios. In case the case that no or little prior information is available, elicitation of hyperparameters is given. To examine, numerically, the performance of the Bayes estimators using non-informative and informative priors under different loss functions, we have simulated their statistical properties for different sample sizes and test termination times. In addition, to highlight the practical significance, an illustrative example based on a real-life engineering data is also given.  相似文献   

12.
Allometric theory predicts that instantaneous mortality rates scale with body mass with a negative quarter power. Such a relationship would mean that the survival rate of one species is partly predictable from the survival rate of other species. We develop allometric regression models for annual adult survival of birds and mammals, using data collected from the literature. These models conform to the predictions of the allometric theory; the value of negative one-quarter for the scaling parameter is within the 95% credible interval, which is [-0.31, -0.10] for birds and [-0.35, -0.15] for mammals. The predictions are very well supported when evaluated using an independent set of data. The regression models can be used to provide objective and informative Bayesian priors for annual adult survival rates of birds and mammals or to act as a point of comparison in new studies.  相似文献   

13.
1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.  相似文献   

14.
We develop a Bayesian analysis based on two different Jeffreyspriors for the Student-t regression model with unknown degreesof freedom. It is typically difficult to estimate the numberof degrees of freedom: improper prior distributions may leadto improper posterior distributions, whereas proper prior distributionsmay dominate the analysis. We show that Bayesian analysis witheither of the two considered Jeffreys priors provides a properposterior distribution. Finally, we show that Bayesian estimatorsbased on Jeffreys analysis compare favourably to other Bayesianestimators based on priors previously proposed in the literature.  相似文献   

15.
The allocation of resources among plant structures depends on size. For example, plants need to have a certain minimum size before they allocate resources into producing seeds. Furthermore, the allometric relationship between different plant structures and size has often been found to be adequately described by power functions. Allometric power functions have traditionally led to a bias when estimating and predicting e.g. seed production as a function of size using classical linear statistical methods. The statistical problems of using the linear models when estimating a power function with a threshold value have been solved but due to the relative complexity of the statistical solutions, the solutions are often not used in the ecological literature. Here, an intuitive and simple power model with a minimum size of allocation is investigated using a Bayesian estimation method on a simulated data set. The Bayesian estimation provided satisfactory estimates of the parameters in the model, and the model is suggested as a simple alternative when fitting allometric power functions to ecological data.  相似文献   

16.
Cheung YK 《Biometrics》2002,58(1):237-240
Gasparini and Eisele (2000, Biometrics 56, 609-615) propose a design for phase I clinical trials during which dose allocation is governed by a Bayesian nonparametric estimate of the dose-response curve. The authors also suggest an elicitation algorithm to establish vague priors. However, in situations where a low percentile is targeted, priors thus obtained can lead to undesirable rigidity given certain trial outcomes that can occur with a nonnegligible probability. Interestingly, improvement can be achieved by prescribing slightly more informative priors. Some guidelines for prior elicitation are established using a connection between this curve-free method and the continual reassessment method.  相似文献   

17.
In the cluster randomised study design, the data collected have a hierarchical structure and often include multivariate outcomes. We present a flexible modelling strategy that permits several normally distributed outcomes to be analysed simultaneously, in which intervention effects as well as individual-level and cluster-level between-outcome correlations are estimated. This is implemented in a Bayesian framework which has several advantages over a classical approach, for example in providing credible intervals for functions of model parameters and in allowing informative priors for the intracluster correlation coefficients. In order to declare such informative prior distributions, and fit models in which the between-outcome covariance matrices are constrained, priors on parameters within the covariance matrices are required. Careful specification is necessary however, in order to maintain non-negative definiteness and symmetry between the different outcomes. We propose a novel solution in the case of three multivariate outcomes, and present a modified existing approach and novel alternative for four or more outcomes. The methods are applied to an example of a cluster randomised trial in the prevention of coronary heart disease. The modelling strategy presented would also be useful in other situations involving hierarchical multivariate outcomes.  相似文献   

18.
The Bayesian method for estimating species phylogenies from molecular sequence data provides an attractive alternative to maximum likelihood with nonparametric bootstrap due to the easy interpretation of posterior probabilities for trees and to availability of efficient computational algorithms. However, for many data sets it produces extremely high posterior probabilities, sometimes for apparently incorrect clades. Here we use both computer simulation and empirical data analysis to examine the effect of the prior model for internal branch lengths. We found that posterior probabilities for trees and clades are sensitive to the prior for internal branch lengths, and priors assuming long internal branches cause high posterior probabilities for trees. In particular, uniform priors with high upper bounds bias Bayesian clade probabilities in favor of extreme values. We discuss possible remedies to the problem, including empirical and full Bayesian methods and subjective procedures suggested in Bayesian hypothesis testing. Our results also suggest that the bootstrap proportion and Bayesian posterior probability are different measures of accuracy, and that the bootstrap proportion, if interpreted as the probability that the clade is true, can be either too liberal or too conservative.  相似文献   

19.
The author describes a Bayesian probability model for estimating population distributions when either micro or macro data on population migration are available. The model is tested using data for two groups of five regions in the Federal Republic of Germany, and it is found that the macro Bayesian estimators lead to a better projection of population distribution than those using micro data.  相似文献   

20.
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号