首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L. amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock.  相似文献   

2.
3.
Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host''s immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.  相似文献   

4.
We have previously demonstrated that yangambin, a lignan obtained from Ocotea duckei Vattimo (Lauraceae), shows antileishmanial activity against promastigote forms of Leishmania chagasi and Leishmania amazonensis. The aim of this study was to determine the in vitro effects of yangambin against these parasites using electron and confocal microscopy. L. chagasi and L. amazonensis promastigotes were incubated respectively with 50 μg/mL and 65 μg/mL of pure yangambin and stained with acridine orange. Treated-parasites showed significant alterations in fluorescence emission pattern and cell morphology when compared with control cells, including the appearance of abnormal round-shaped cells, loss of cell motility, nuclear pyknosis, cytoplasm acidification and increased number of acidic vesicular organelles (AVOs), suggesting important physiological changes. Ultrastructural analysis of treated-promatigotes showed characteristics of cell death by apoptosis as well as by autophagy. The presence of parasites exhibiting multiples nuclei suggests that yangambin may also affect the microtubule dynamic in both Leishmania species. Taken together our results show that yangambin is a promissing agent against Leishmania.  相似文献   

5.
In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.  相似文献   

6.
7.
The replication and segregation of organelles producing two identical daughter cells must be precisely controlled during the cell cycle progression of eukaryotes. In kinetoplastid flagellated protozoa, this includes the duplication of the single mitochondrion containing a network of DNA, known as the kinetoplast, and a flagellum that grows from a cytoplasmic basal body through the flagellar pocket compartment before emerging from the cell. Here, we show the morphological events and the timing of these events during the cell cycle of the epimastigote form of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease. DNA staining, flagellum labeling, bromodeoxyuridine incorporation, and ultra-thin serial sections show that nuclear replication takes 10% of the whole cell cycle time. In the middle of the G2 stage, the new flagellum emerges from the flagellar pocket and grows unattached to the cell body. While the new flagellum is still short, the kinetoplast segregates and mitosis occurs. The new flagellum reaches its final size during cytokinesis when a new cell body is formed. These precisely coordinated cell cycle events conserve the epimastigote morphology with a single nucleus, a single kinetoplast, and a single flagellum status of the interphasic cell.  相似文献   

8.
Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects Leishmania donovani from PCD. Whereas this peroxiredoxin is restricted to the kinetoplast area in promastigotes, it covers the entire mitochondrion in amastigotes, accompanied by dramatically increased expression. A similar change in the expression pattern was observed during the growth of Leishmania from the early to the late logarithmic phase. Recombinant LdmPrx shows typical peroxiredoxin-like enzyme activity. It is able to detoxify organic and inorganic peroxides and prevents DNA from hydroxyl radical-induced damage. Most notably, Leishmania parasites overexpressing this peroxiredoxin are protected from hydrogen peroxide-induced PCD. This protection is also seen in promastigotes grown to the late logarithmic phase, also characterized by high expression of this peroxiredoxin. Apparently, the physiological role of this peroxiredoxin is stabilization of the mitochondrial membrane potential and, as a consequence, inhibition of PCD through removal of peroxides.  相似文献   

9.
Leishmania parasites, the causative agent of leishmaniasis, are transmitted through the bite of an infected sand fly. Leishmania parasites present two basic forms known as promastigote and amastigote which, respectively, parasitizes the vector and the mammalian hosts. Infection of the vertebrate host is dependent on the development, in the vector, of metacyclic promastigotes, however, little is known about the factors that trigger metacyclogenesis in Leishmania parasites. It has been generally stated that “stressful conditions” will lead to development of metacyclic forms, and with the exception of a few studies no detailed analysis of the molecular nature of the stress factor has been performed. Here we show that presence/absence of nucleosides, especially adenosine, controls metacyclogenesis both in vitro and in vivo. We found that addition of an adenosine-receptor antagonist to in vitro cultures of Leishmania amazonensis significantly increases metacyclogenesis, an effect that can be reversed by the presence of specific purine nucleosides or nucleobases. Furthermore, our results show that proliferation and metacyclogenesis are independently regulated and that addition of adenosine to culture medium is sufficient to recover proliferative characteristics for purified metacyclic promastigotes. More importantly, we show that metacyclogenesis was inhibited in sand flies infected with Leishmania infantum chagasi that were fed a mixture of sucrose and adenosine. Our results fill a gap in the life cycle of Leishmania parasites by demonstrating how metacyclogenesis, a key point in the propagation of the parasite to the mammalian host, can be controlled by the presence of specific purines.  相似文献   

10.
Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania which affects 12 million people worldwide. The discovery of drugs for the treatment of leishmaniasis is a pressing concern in global health programs. The aim of this study aim was to evaluate the leishmanicidal effect of piperine and its derivatives/analogues on Leishmania amazonensis. Our results showed that piperine and phenylamide are active against promastigotes and amastigotes in infected macrophages. Both drugs induced mitochondrial swelling, loose kinetoplast DNA, and led to loss of mitochondrial membrane potential. The promastigote cell cycle was also affected with an increase in the G1 phase cells and a decrease in the S-phase cells, respectively, after piperine and phenylamide treatment. Lipid analysis of promastigotes showed that piperine reduced triglyceride, diacylglycerol, and monoacylglycerol contents, whereas phenylamide only reduced diacylglycerol levels. Both drugs were deemed non toxic to macrophages at 50 μM as assessed by XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt), Trypan blue exclusion, and phagocytosis assays, whereas low toxicity was noted at concentrations higher than 150 μM. None of the drugs induced nitric oxide (NO) production. By contrast, piperine reduced NO production in activated macrophages. The isobologram analysis showed that piperine and phenylamide acted synergistically on the parasites suggesting that they affect different target mechanisms. These results indicate that piperine and its phenylamide analogue are candidates for development of drugs for cutaneous leishmaniasis treatment.  相似文献   

11.
Leishmania is an obligate intracellular parasite that primarily inhabits macrophages. The destruction of the parasite in the host cell is a fundamental mechanism for infection control. In addition, inhibition of the leishmanicidal activity of macrophages seems to be related to the ability of some species to inhibit the production of nitric oxide (NO) by depleting arginine. Some species of Leishmania have the ability to produce NO from a constitutive nitric oxide synthase-like enzyme (cNOS-like). However, the localization of cNOS-like in Leishmania has not been described before. As such, this study was designed to locate cNOS-like enzyme and NO production in promastigotes of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. NO production was initially quantified by flow cytometry, which indicated a significant difference in NO production between L. (L.) amazonensis (GMFC = 92.17 +/− 4.6) and L. (V.) braziliensis (GMFC = 18.89 +/− 2.29) (P < 0.05). Analysis of cNOS expression by immunoblotting showed more expression in L. (L.) amazonensis versus L. (V.) braziliensis. Subsequently, cNOS-like immunolabeling was observed in promastigotes in regions near vesicles, the flagellar pocket and mitochondria, and small clusters of particles appeared to be fusing with vesicles suggestive of glycosomes, peroxisome-like-organelles that compartmentalize the glycolytic pathway in trypanosomatid parasites. In addition, confocal microscopy analysis demonstrated colocalization of cNOS-like and GAPDH, a specific marker for glycosomes. Thus, L. (L.) amazonensis produces greater amounts of NO than L. (V.) braziliensis, and both species present the cNOS-like enzyme inside glycosomes.  相似文献   

12.
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.  相似文献   

13.

Background

Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied.

Methodology/Principal Findings

In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC50 for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential.

Conclusions/Significance

The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function.  相似文献   

14.
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.  相似文献   

15.
SYNOPSIS. The ultrastructure of promastigotes of 4 reptilian isolates of Leishmania grown in culture, is described. One mammalian isolate of Leishmania is also examined for comparison. No differences in the basic ultrastructure of these strains are apparent; neither is there any significant digression from the organization described for other trypanosomatids. It appears, however, that the numbers of subpellicular microtubules are of potential use in taxonomy, and that differences in the spacing of these organelles exist between reptilian and mammalian forms. In addition, an attempt is made to clarify aspects of attachment of the flagellum to the subpellicular tubule network, and to the anterior face of the kinetoplast. Finally, the formation of multivesiculate bodies from the Golgi apparatus is described, together with some features of dividing forms.  相似文献   

16.
Metacaspases (MCAs) are distant orthologues of caspases and have been proposed to play a role in programmed cell death in yeast and plants, but little is known about their function in parasitic protozoa. The MCA gene of Leishmania major (LmjMCA) is expressed in actively replicating amastigotes and procyclic promastigotes, but at a lower level in metacyclic promastigotes. LmjMCA has a punctate distribution throughout the cell in interphase cells, but becomes concentrated in the kinetoplast (mitochondrial DNA) at the time of the organelle's segregation. LmjMCA also translocates to the nucleus during mitosis, where it associates with the mitotic spindle. Overexpression of LmjMCA in promastigotes leads to a severe growth retardation and changes in ploidy, due to defects in kinetoplast segregation and nuclear division and an impairment of cytokinesis. LmjMCA null mutants could not be generated and following genetic manipulation to express LmjMCA from an episome, the only mutants that were viable were those expressing LmjMCA at physiological levels. Together these data suggest that in L. major active LmjMCA is essential for the correct segregation of the nucleus and kinetoplast, functions that could be independent of programmed cell death, and that the amount of LmjMCA is crucial. The absence of MCAs from mammals makes the enzyme a potential drug target against protozoan parasites.  相似文献   

17.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

18.
Leishmania actin (LdACT) is an unconventional form of eukaryotic actin in that it markedly differs from other actins in terms of its filament forming as well as toxin and DNase-1-binding properties. Besides being present in the cytoplasm, cortical regions, flagellum and nucleus, it is also present in the kinetoplast where it appears to associate with the kinetoplast DNA (kDNA). However, nothing is known about its role in this organelle. Here, we show that LdACT is indeed associated with the kDNA disc in Leishmania kinetoplast, and under in vitro conditions, it specifically binds DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove. We further reveal that this protein exhibits DNA-nicking activity which requires its polymeric state as well as ATP hydrolysis and through this activity it converts catenated kDNA minicircles into open form. In addition, we show that LdACT specifically binds bacterial type II topoisomerase and inhibits its decatenation activity. Together, these results strongly indicate that LdACT could play a critical role in kDNA remodeling.  相似文献   

19.
Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.  相似文献   

20.
Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen Leishmania. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some Leishmania species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of L. amazonensis is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by L. amazonensis promastigotes significantly enhances parasite resistance against ONOO cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to Leishmania''s ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号