首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13C nuclear magnetic resonance (13C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-13C]citrate, [3-13C]pyruvate, and [2-13C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. α-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the α-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

2.
Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO2 fixation is an important component of the carbon metabolism in S. brunnea, and it is likely that this anaplerotic role is particularly prevalent during NH4+ assimilation. The most relevant information resulting from this investigation is (a) the occurrence of the mannitol cycle, (b) a large part of the trehalose pool is synthesized after the cycling of glucose-carbon through the mannitol cycle, and (c) pyruvate (or phosphoenolpyruvate) carboxylation plays an important role in the primary metabolism of glucose-fed mycelia.  相似文献   

3.
13C spin diluted protein samples can be produced using [1-13C] and [2-13C]-glucose (Glc) carbon sources in the bacterial growth medium. The 13C spin dilution results in favorable 13C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-13C]- and [2-13C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-13C]-glycerol (13C labeled Cα sites on a 12C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17–26, 2011 ). Inspired by this approach and our own recent results using [2-13C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of 13C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.  相似文献   

4.
5.
《Insect Biochemistry》1988,18(6):531-538
Studies were made on 13C and 31P NMR in larvae of two species of silkworm, Bombyx mori and Philosamia cynthia ricini, in vivo as well as in vitro to determine the pathways of glucose utilization, especially those to amino acids as components of silk fibroin. Results showed that the 13C of [1-13C]glucose administered orally into 5th instar larvae of both species was incorporated into glucose-1-phosphate, glucose-6-phosphate and trehalose. Serine, glutamate, glutamine, citrate, malate, trehalose and sorbitol-6-phosphate were detected in the hemolymphs of these larvae as metabolites of [1-13C]glucose. Two days after [1-13C]glucose administration, labeled alanine, glycine, serine, urea, glycogen, trehalose and glycerol were clearly detected in Bombyx larvae. Starvation caused rapid consumption of administered [1-13C]glucose with very little accumulation of 13C in glycogen or trehalose. In the in vivo31P NMR spectra of Bombyx larvae, ATP, arginine phosphate, sorbitol-6-phosphate, uridine diphosphoglucose, phosphoenolpyruvate and inorganic phosphate were detected with some sugar phosphates, such as glucose-1-phosphate and glucose-6-phosphate. During starvation, the intensity of the signal of inorganic phosphate increased and those of sugar phosphate other than sorbitol-6-phosphate decreased, but these changes were reversed by oral administration of glucose.  相似文献   

6.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide αs1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.  相似文献   

7.
13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth.  相似文献   

8.
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of bacteria in the human colonic niche. Bifidobacterium animalis subsp. lactis, a probiotic bacterium with documented health benefits, is applied largely in fermented dairy products. In this study, the effect of bile salts on proteomes of B. animalis subsp. lactis IPLA 4549 and its bile-resistant derivative B. animalis subsp. lactis 4549dOx was analyzed, leading to the identification of proteins which may represent the targets of bile salt response and adaptation in B. animalis subsp. lactis. The comparison of the wild-type and the bile-resistant strain responses allowed us to hypothesize about the resistance mechanisms acquired by the derivative resistant strain and about the bile salt response in B. animalis subsp. lactis. In addition, significant differences in the levels of metabolic end products of the bifid shunt and in the redox status of the cells were also detected, which correlate with some differences observed between the proteomes. These results indicate that adaptation and response to bile in B. animalis subsp. lactis involve several physiological mechanisms that are jointly dedicated to reduce the deleterious impact of bile on the cell's physiology.  相似文献   

9.
13C-based metabolic flux analysis (13CMFA) is limited to smaller scale experiments due to very high costs of labeled substrates. We measured 13C enrichment in proteinogenic amino acid hydrolyzates using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) from a series of parallel batch cultivations of Corynebacterium glutamicum utilizing mixtures of natural glucose and [1-13C] glucose, containing 0%, 0.5%, 1%, 2%, and 10% [1-13C] glucose. Decreasing the [1-13C] glucose content, kinetic isotope effects played an increasing role but could be corrected. From the corrected 13C enrichments in vivo fluxes in the central metabolism were determined by numerical optimization. The obtained flux distribution was very similar to those obtained from parallel labeling experiments using conventional high labeling GC-MS method and to published results. The GC-C-IRMS-based method involving low labeling degree of expensive tracer substrate, e.g. 1%, is well suited for larger laboratory and industrial pilot scale fermentations.  相似文献   

10.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

11.
The metabolic fate of citrate and pyruvate in four strains of Lactococcus lactis subsp. lactis biovar diacetylactis has been studied by means of 13C nuclear magnetic resonance, using as a substrate either [3-13C]pyruvic acid or custom-synthesized citric acid that is 13C labeled either at carbons 2 and 4 or at carbon 3. The fermentations were carried out batchwise in modified M17 broth. For the actual conversions of the 13C-labeled substrates, cells at the end of their logarithmic growth phase were used to minimize the conversion to lactic acid. A mass balance of the main citric acid metabolites was obtained; the four strains produced from 50 to 70% (on a molar basis) lactic acid from either citrate or pyruvate. The remaining 50 to 30% was converted mainly to either α-acetolactic acid (for one strain) or acetoin (for the other three strains). One of the strains produced an exceptionally high concentration of the diacetyl precursor α-acetolactic acid. Another strain (SDC6) also produced α-acetolactic acid, but this was decarboxylated to acetoin at a high rate. The 13C nuclear magnetic resonance method confirmed that the biosynthesis of α-acetolactic acid occurs via condensation of pyruvate and “active” acetaldehyde. Diacetyl was not found as a direct metabolite of citrate or pyruvate metabolism.  相似文献   

12.
A new sinapic acid ester has been isolated and characterized as 1(E),2(E)-di-O-sinapoyl-β-d-glucopyranoside from cotyledons of dark-grown red radish (Raphanus sativus) seedlings. Its structure was elucidated by negative ion fast atom bombardment mass spectrometry, 1H and 13C NMR spectra and enzymatic determination of the glucose moiety. A possible biosynthetic mechanism for the formation of this new ester is discussed in which the energy-rich acyl glucoside 1-O-sinapoyl-β-d-glucose acts as the acyl donor in a sinapoyl transfer to the hydroxyl group at C-2 of the glucose moiety of another molecule of 1-O-sinapoyl-β-d-glucose (‘disproportionation’).  相似文献   

13.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.  相似文献   

14.
The use of parallel labeling experiments for 13C metabolic flux analysis (13C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-13C]glucose and mixtures of [1-13C]glucose and [U-13C]glucose, four novel tracers were applied in this study: [2,3-13C]glucose, [4,5,6-13C]glucose, [2,3,4,5,6-13C]glucose and a mixture of [1-13C]glucose and [4,5,6-13C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-13C]glucose+20% [U-13C]glucose, while [4,5,6-13C]glucose and [5-13C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.  相似文献   

15.
We have developed a novel approach for measuring highly accurate and precise metabolic fluxes in living cells, termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. The COMPLETE-MFA method is based on combined analysis of multiple isotopic labeling experiments, where the synergy of using complementary tracers greatly improves the precision of estimated fluxes. In this work, we demonstrate the COMPLETE-MFA approach using all singly labeled glucose tracers, [1-13C], [2-13C], [3-13C], [4-13C], [5-13C], and [6-13C]glucose to determine precise metabolic fluxes for wild-type Escherichia coli. Cells were grown in six parallel cultures on defined medium with glucose as the only carbon source. Mass isotopomers of biomass amino acids were measured by gas chromatography–mass spectrometry (GC–MS). The data from all six experiments were then fitted simultaneously to a single flux model to determine accurate intracellular fluxes. We obtained a statistically acceptable fit with more than 300 redundant measurements. The estimated flux map is the most precise flux result obtained thus far for E. coli cells. To our knowledge, this is the first time that six isotopic labeling experiments have been successfully integrated for high-resolution 13C-flux analysis.  相似文献   

16.
Nuclear magnetic resonance (NMR) technology was applied to study the glucose metabolism inTribolium confusum (Coleoptera).13C signals of D-(1-13C)glucose eaten by beetles were clearly detected in such metabolites of the glucose metabolism as glycogen, trehalose, triacylglycerol, alanine and proline by13C-NMR. After glucose feeding the31P-NMR spectra ofT. confusum showed the signal intensity increases in arginine-phosphate, sugar-phosphate and uridine diphosphoglucose. The results demonstrated the potential of NMR analysis for the study of glucose metabolism inT. confusum.  相似文献   

17.
R. Viola  H. V. Davies  A. R. Chudeck 《Planta》1991,183(2):202-208
Tissue slices from developing potato tubers (Solanum tuberosum L.) and developing cotyledons of faba bean (Vicia faba L.) were incubated with specifically labelled [13C]glucose and [13C]ribose. Enriched[13C]glucose released from starch granules was analysed by nuclear magnetic resonance (NMR). Spectral analyses were also performed on sucrose purified by high-performance liquid chromatography. In both tissues a low degree of randomisation (< 11 % in potato and < 14% in Vicia) was observed between carbon positions 1 and 6 in glucose released from starch when material was incubated with [13C]glucose labelled in positions 6 and 1, respectively. Similarly, with [2-13C]glucose a low degree of randomisation was observed in position 5. These findings indicate that extensive transport of three-carbon compounds across the amyloplast membrane does not occur in storage organs of either species. This is in agreement with previously published data which indicates that sixcarbon compounds are transported into the plastids during active starch synthesis. When [1-13C]ribose was used as a substrate, 13C-NMR spectra of starch indicated the operation of a classical pentose-phosphate pathway. However, with [2-13C]glucose there was no preferential enrichment in either carbon positions 1 or 3 relative to 4 or 6 of sucrose and starch (glucose). This provides evidence that entry of glucose in this pathway may be restricted in vivo. In both faba bean and potato the distribution of isotope between glucosyl and fructosyl moieties of sucrose approximated 50%. The degree of randomisation within glucosyl and fructosyl moieties ranged between 11 and 19.5%, indicating extensive recycling of triose phosphates.Abbreviation NMR nuclear magnetic resonance We are grateful to Dr. George Ratcliffe for his critical reading of the text and Dr. Bernard Goodman for helpful suggestions on the NMR measurements. The research was funded by a European Economic Community research grant, which the authors duly acknowledge.  相似文献   

18.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

19.
When specifically labeled glutamate-1-14C was provided to 4-day-old rose cells, 87.6% of the 14C in glutamate recovered from protein was in the number 1 carbon atom of the glutamate molecule. It was concluded that newly absorbed glutamate was incorporated directly into protein without any prior metabolism.  相似文献   

20.
Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires'' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-13C3]serine, [U-13C6]glucose, or [1,2-13C2]glucose. After growth, 13C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-13C3]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [13C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-13C2]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Δzwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号