首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ketoacids (KA) are known to preserve muscle mass among patients with chronic kidney disease (CKD) on a low-protein diet (LPD). The present study was to compare the effects of KA supplemented diet therapy in autophagy and inflammation in CKD rats'' skeletal muscle. Rats with 5/6 nephrectomy were randomly divided into three groups and fed with either 11 g/kg/day protein [normal-protein diet (NPD)], 3 g/kg/day protein (LPD) or 3 g/kg/day protein which including 5% protein plus 1% KA (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as control. LPD could improve body weight, gastrocnemius muscle mass, as well as gastrocnemius muscle cross-sectional area, with the effect being more obvious in the LPD + KA group. The autophagy marker LC3 (microtubule-associated protein 1 light chain 3), p62, Parkin and PTEN induced putative kinase 1 (PINK1) were significantly attenuate in LPD + KA group than LPD group. LPD + KA group had the lower total mtDNA (mitochondiral DNA) and cytosol mtDNA, NACHT-PYD-containing protein 3 (NALP3) inflammasome than LPD group, but its reactive oxygen species (ROS), caspase-1 and apoptosis-associated speck-like protein containing a CARD (ASC) level was higher. Immunoblotting showed IL-1β (interleukin-1-beta) was lower in LPD and LPD + KA group than the NPD group, but IL-18 showed no significant difference among control and CKD group; toll-like receptor signalling-dependent IL-6 was higher in LPD + KA group than LPD group, but tumor necrosis factor-α (TNF-α) was not significantly changed between LPD + KA and LPD group. Systematic changes of the four cytokines were different from that of the tissue. Although LPD + KA could further ameliorate-activated autophagy than LPD, its effect on the activated inflammation state in CKD was not distinctly. Further study is still required to explore the method of ameliorating inflammation to provide new therapeutic approaches for CKD protein energy wasting (PEW).  相似文献   

2.
Male streptocozin diabetic rats were fed ad libitum in two diets, one a control, adequate in protein and energy, and another, depleted in protein, but adequate in energy. Within each one of these dietary groups, three hormone-treated groups were made as follows: rats receiving vehicle, or 0.25 or 0.50 I.U. insulin/100 g body weight/day i.p. for 21 days. A fourth group of intact rats, receiving vehicle injection, was included as a control. Every day urine excretion was collected for urea-N and 3-methylhistidine (3-Mehis) determination. Body weight and food intake were recorded daily. At the end of the experiment, all animals were sacrificed, and a sample of blood was taken for plasma insulin assay. Liver, as well as gastrocnemius, soleus and extensor digitorum longus muscles were excised and weighed. Results showed that diabetic animals had a reduced body weight gain, although the food intake was elevated in all groups, as compared to the intact rats. Gastrocnemius and soleus muscle weights were, respectively, reduced and increased in the diabetic animals fed the low-protein diet. Urea-N output was elevated in all groups fed the control diet, but a marked reduction was observed in the protein depleted rats. A reduction in 3-Mehis output was displayed by the diabetic animals, specially those fed the low-protein diet. The results of this experiment showed that in streptocozin diabetic rats there was a reduction in the rate of myofibrillar protein breakdown, specially marked when fed a protein depleted diet.  相似文献   

3.
Adaptation to low-protein diet increases inhibition of gastric emptying by CCK   总被引:10,自引:0,他引:10  
Leray V  Segain JP  Cherbut C  Galmiche JP 《Peptides》2003,24(12):1929-1934
Chronic nutritional disorders such as protein malnutrition are associated with delayed gastric emptying and increased postprandial cholecystokinin (CCK) levels. This study investigated the mechanisms involved in gastric emptying adaptation to low-protein diet. Two groups of 12 rats were adapted to a low-protein (LPD) or standard diet (SD) for 3 weeks. As compared to rats fed a SD, in rats adapted to a LPD gastric emptying was delayed, whereas postprandial CCK levels were increased. LPD enhanced antral muscle contractile response to CCK and cerulein without altering response to acetylcholine. This increased contractility was associated with up-regulation of CCK-A receptor mRNA levels in antral muscle. Our data suggest that modulation of gastric emptying after adaptation to a low-protein diet involves up-regulation of both CCK-A receptors and CCK-induced contraction of antral smooth muscle.  相似文献   

4.
This study investigated regulation of autophagy in slow-twitch soleus and fast-twitch plantaris muscles in fasting-related atrophy. Male Fischer-344 rats were subjected to fasting for 1, 2, or 3 days. Greater weight loss was observed in plantaris muscle than in soleus muscle in response to fasting. Western blot analysis demonstrated that LC3-II, a marker protein for macroautophagy, was expressed at a notably higher level in plantaris than in soleus muscle, and that the expression level was fasting duration-dependent. To identify factors related to LC3-II enhancement, autophagy-related signals were examined in both types of muscle. Phosphorylated mTOR was reduced in plantaris but not in soleus muscle. FOXO3a and ER stress signals were unchanged in both muscle types during fasting. These findings suggest that preferential atrophy of fast-twitch muscle is associated with induction of autophagy during fasting and that differences in autophagy regulation are attributable to differential signal regulation in soleus and plantaris muscle.  相似文献   

5.
Regulation of vitamin D metabolism alters with age. The present study is undertaken to investigate if the loss of renal 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) production in response to dietary phosphate (P) restriction in adult rats is due to an alteration in the renal expression of 25-hydroxyvitamin D(3) 1-alpha hydroxylase (1-OHase). Young (4-6 weeks old) and adult (12-14 weeks old) male Sprague Dawley rats were fed either normal P (NPD) or low P diet (LPD) for 0-5 days. Basal expression of 1-OHase protein was higher in adult rats. Young rats, but not adult rats, significantly increased 1-OHase protein and mRNA expressions in response to LPD in a time-dependent manner. To determine if the stability of renal 1-OHase protein changes with LPD feeding, young and adult rats fed either NPD or LPD for 5 days were injected intravenously with cycloheximide (CHX), a protein synthesis inhibitor. CHX decreased 1-OHase protein expression in young rats fed NPD. However, CHX did not alter 1-OHase protein expression in young rats fed LPD nor in adult rats fed either diet. The results indicate that the stability of renal 1-OHase protein increased with age and that LPD increased its stability only in young rats.  相似文献   

6.
Feeding high-protein diets in animals can lead to a decrease of nitrogen utilization efficiency, and then promote the environmental pollution. Recently, more reports have demonstrated that lowering protein level in diets supplemented with specific amino acids can address these problems. However, the whole proteome alteration in the skeletal muscle of weaned piglets fed low-protein diets is poorly understood. Here, we applied the isobaric tags for relative and absolute quantification approach to investigate this alteration. We fed weaned piglets with normal protein diet (20% crude protein) and low-protein diet supplemented with lysine, methionine, threonine, and tryptophan (17% crude protein) for 25 days. Then proteomic profiling of skeletal muscles was performed. In total, 1354 proteins were quantified in the porcine skeletal muscle proteome. 132 proteins were identified as differentially expressed proteins between the two groups. Differentially expressed proteins were significantly enriched in various nutrient metabolism including lipid, carbohydrate, and amino acid metabolism. Interestingly, a total of 20 differentially expressed proteins, which are involved in the oxidative phosphorylation pathway, were all down-regulated by the low-protein diet feeding. Further immunoblotting confirmed the down-regulations of MT-ATP8, COX2, NDUFA6, and SDHB, four selected proteins among these 20 proteins. Meanwhile, the ATP level in the low-protein diet group was also reduced. These findings for the first time reveal that oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids, which may provide new insights into further formula design and the choice of limiting amino acids in diets.  相似文献   

7.
We previously reported that protein‐restricted rats experienced compensatory growth when they were switched to a normal protein diet (NPD). This study aimed to investigate the changes in gene expression and microbiome in the jejunum of compensatory‐growth rats. Weaned Sprague‐Dawley rats were assigned to an N group, an LN group and an L group. The rats in the L and N groups were fed a low protein diet (LPD) and the NPD respectively. The rats in the LN group were fed with the LPD for 2 weeks, followed by the NPD. The experiment lasted 70 days, and the rats were sacrificed for sampling on days 14, 28 and 70 to determine the jejunal morphology, microbiome and gene expression related to digestive, absorptive and barrier function. The results showed that, although rats in the LN group had temporarily impaired morphology and gene expression in the jejunum on day 14 in response to the LPD, they had improved jejunal morphology and gene expression related to jejunal function on day 28 compared to rats in the N group. This improvement might promote compensatory growth of rats. However, lower expression of genes related to nutrient absorption and undifferentiated villous height (VH) were observed in the jejunum of rats in the LN group on day 70. In contrast, rats in the L group had lower VH on day 28 and day 70, while the expression of absorptive genes increased on day 28 compared to rats in the N group. Additionally, dramatic microbial changes in the jejunum of compensatory‐growth rats were observed, principally for Lactobacillus, Streptococcus, Corynebacterium and Staphylococcus. Moreover, the abundance of Lactobacillus, Streptococcus, Corynebacterium and Staphylococcus significantly correlated with gene expression in the jejunum as revealed by the correlation analysis.  相似文献   

8.
Changes in the proteasome system, a dominant actor in protein degradation in eukaryotic cells, have been documented in a large number of physiological and pathological conditions. We investigated the influence of monounsaturated or polyunsaturated fatty acids (PUFAs) supplemented diets on the proteasome system, in rat skeletal muscles. Thirty rats were randomly assigned to three groups. The control group received only a standard diet. The monounsaturated fatty acid (MUFA) enriched diet group was fed with 3% sunflower oil in addition to standard food, and the polyunsaturated fatty acid supplemented diet group received 9% Maxepa) in addition to the standard diet. We analyzed muscle proteasome activities and content. Monounsaturated or PUFAs supplemented diets given for 8 weeks induced a significant increase in proteasome activities. With the polyunsaturated fatty acid enriched diet, the chymotrypsin-like and peptidylglutamylpeptide hydrolase activities increased by 45% in soleus and extensor digitorum longus (EDL), and by 90% in the gastrocnemius medialis (GM) muscle. Trypsin-like activity of the proteasome increased by 250% in soleus, EDL and GM. This increase in proteasome activities was associated with a concomitant enhancement in the muscle content of proteasome. Proteasome activities and level were less stimulated with a monounsaturated fatty acid supplemented diet. This study provides evidence that a monounsaturated or polyunsaturated fatty acid supplemented diet may regulate muscle proteasomes. Unsaturated fatty acids are particularly prone to free radical attack. Thus, we suggest that alterations in muscle proteasome may result from monounsaturated and polyunsaturated fatty acid-induced peroxidation, in order to eliminate damaged proteins.  相似文献   

9.
A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.  相似文献   

10.

Background

Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats.

Methods/Principal Findings

Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats.

Conclusions

Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.  相似文献   

11.
目的: 观察大负荷离心运动对大鼠骨骼肌自噬超微结构及自噬相关蛋白Beclin1和LC3II/I的影响。方法: 48只SD雄性大鼠适应性训练后随机分成对照组(C,n=8)和大负荷离心运动组(E,n=40)。E组于跑台进行90 min下坡跑,运动后0 h、12 h、24 h、48 h和72 h取比目鱼肌,透射电镜观察其自噬体超微结构变化;Western blot检测Beclin1和LC3II/I蛋白表达;免疫荧光观测LC3的定位及含量变化。结果: E组比目鱼肌自噬体数量在运动后0 h、12 h和24 h均有增加,并伴LC3自噬荧光明显增强(P<0.01),同时运动后48 h自噬荧光仍有显著性升高(P<0.05);Beclin1和LC3II/I在大负荷离心干预后表达升高(P<0.05),运动后12 h~24 h达到峰值(P<0.01),直至运动后72 h完全恢复。结论: 大负荷离心运动可诱导骨骼肌自噬超微结构变化,自噬蛋白表达增强,以上可能是运动损伤的骨骼肌功能下降的原因之一。  相似文献   

12.
Human and animal studies have revealed a strong association between periconceptional environmental factors, such as poor maternal diet, and an increased propensity for cardiovascular and metabolic disease in adult offspring. Previously, we reported cardiovascular and physiological effects of maternal low protein diet (LPD) fed during discrete periods of periconceptional development on 6-month-old mouse offspring. Here, we extend the analysis in 1 year aging offspring, evaluating mechanisms regulating growth and adiposity. Isocaloric LPD (9% casein) or normal protein diet (18% casein; NPD) was fed to female MF-1 mice either exclusively during oocyte maturation (for 3.5 days prior to mating; Egg-LPD, Egg-NPD, respectively), throughout gestation (LPD, NPD) or exclusively during preimplantation development (for 3.5 days post mating; Emb-LPD). LPD and Emb-LPD female offspring were significantly lighter and heavier than NPD females respectively for up to 52 weeks. Egg-LPD, LPD and Emb-LPD offspring displayed significantly elevated systolic blood pressure at 52 weeks compared to respective controls (Egg-NPD, NPD). LPD females had significantly reduced inguinal and retroperitoneal fat pad: body weight ratios compared to NPD females. Expression of the insulin receptor (Insr) and insulin-like growth factor I receptor (Igf1r) in retroperitoneal fat was significantly elevated in Emb-LPD females (P<0.05), whilst Emb-LPD males displayed significantly decreased expression of the mitochondrial uncoupling protein 1 (Ucp1) gene compared to NPD offspring. LPD females displayed significantly increased expression of Ucp1 in interscapular brown adipose tissue when compared to NPD offspring. Our results demonstrate that aging offspring body weight, cardiovascular and adiposity homeostasis can be programmed by maternal periconceptional nutrition. These adverse outcomes further exemplify the criticality of dietary behaviour around the time of conception on long-term offspring health.  相似文献   

13.
Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-re-lated protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.  相似文献   

14.
Phosphate deprivation causes a resistance to the phosphaturic effect of parathyroid hormone (PTH). The present study determined whether acute phosphate deprivation alters basal or stimulated activities of key enzymes of the cyclic adenosine monophosphate (cAMP) metabolism in microdissected proximal convoluted and proximal straight tubules, since blunted cAMP levels in these proximal subsegments might account for refractoriness to the effect of PTH on phosphate reabsorption in the proximal convoluted and proximal straight tubule segments. In the proximal convoluted tubules of rats fed a normal-phosphate diet (NPD), PTH increased the adenylate cyclase activity by tenfold. In the proximal convoluted tubule of rats fed a low-phosphate diet (LPD), PTH also increased the adenylate cyclase activity by tenfold. In addition, forskolin increased the adenylate cyclase activity to levels similar to PTH in the proximal convoluted tubule of rats fed NPD or LPD. In the proximal straight tubule of rats fed NPD, PTH resulted in an approximately fivefold increase in adenylate cyclase activity. In the proximal straight tubule of rats fed LPD, PTH resulted in a fourfold increase in adenylate cyclase activity. The forskolin-stimulated adenylate cyclase activity was markedly decreased (46%) in the proximal straight tubule of phosphate-deprived rats. The cAMP-phosphodiesterase activity in the proximal convoluted tubule was significantly increased by 26% in phosphate-deprived rats. The cAMP-phosphodiesterase activities in the proximal straight tubules from rats fed NPD or LPD were similar. We conclude that distinct differences in key enzymes of cAMP metabolism exist in the proximal convoluted and proximal straight tubule subsegments. Further, phosphate deprivation affects the cAMP-phosphodiesterase and adenylate cyclase activities differently in these nephron subsegments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. Aspects of skeletal muscle protein synthesis in vitro were studied in young rats given a low-protein diet for up to 10 days and during re-feeding with an adequate diet. 2. Partially purified muscle transfer factors (transferases I and II), crude and purified (NH(4)Cl-washed) ribosomes and a pH5 enzyme fraction were prepared for this purpose. 3. A marked decrease in the capacity of crude ribosomes to carry out cell-free polypeptide synthesis occurred within 4 days of feeding the low-protein diet. 4. The capacity of salt-washed ribosomes to promote amino acid polymerization, in the presence of added transfer factors and aminoacyl-tRNA, was only slightly decreased by the dietary treatment. 5. However, the capacity of salt-washed ribosomes to bind (14)C-labelled aminoacyl-tRNA was decreased by feeding the low-protein diet. 6. The capacity of the pH5 enzyme fraction to promote amino acid incorporation in a complete cell-free system was decreased within 2 days of feeding the low-protein diet. There is no evidence that the change is associated with aminoacyl-tRNA synthetase or binding enzyme activities of the pH5 fractions. 7. These changes are discussed in relation to the diminished rate of protein synthesis in the intact muscle cell when rats are given a low-protein diet.  相似文献   

16.
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.  相似文献   

17.

Background

Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition.

Methodology/Principal Findings

Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC-CON group.

Conclusion/Significance

Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.  相似文献   

18.
We have reported that dietary inorganic phosphate (Pi) deprivation induces a Pi-seeking behavior in juvenile male rats. The purpose of the present study was to determine whether the Pi appetite is present in adult animals, and if so, whether it is altered during times of increased demand for Pi, such as pregnancy and lactation. Both male and female animals fed a low-phosphate diet (LPD) ingested significantly greater amounts of PiH(2)O daily than their normal phosphate diet (NPD) controls, and per 100 g of body weight (BW), the female animals fed LPD tended to ingest greater amounts of PiH(2)O than male rats fed LPD. Pregnant and lactating rats fed LPD ingested significantly more PiH(2)O than those fed NPD, however, neither group displayed a Pi appetite different than virgin females. However, lactation further reduced Pi levels in plasma and cerebral spinal fluid compared with control values. Despite the additional Pi from the PiH(2)O in the mothers fed LPD, pup birth weight was significantly lower than in NPD litters, and this was exacerbated 9 days after birth. This attenuated BW gain was associated with lower plasma Pi levels in the pups. In conclusion, a mild but consistent Pi-seeking behavior is induced in adult male and female rats after only 2 days of dietary Pi restriction. On a relative basis, the amount of PiH(2)O ingested is greater in female than in male animals, but does not increase further during pregnancy and lactation.  相似文献   

19.
Lee JS 《Life sciences》2006,79(16):1578-1584
In the current study, the effect of soy protein and genistein, one of the main isoflavones in soybeans, on blood glucose, lipid profile, and antioxidant enzyme activities in streptozotocin (STZ)-induced diabetic rats was investigated. Male Sprague-Dawley rats were divided into nondiabetic control, STZ, STZ-genistein supplemented group (STZ-G; 600 mg/kg diet), and STZ-isolated soy protein supplemented group (STZ-ISP; 200 g/kg diet). Diabetes was induced by a single injection of STZ (50 mg/kg BW) freshly dissolved in 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. Diabetes was confirmed by measuring the fasting blood glucose concentration 48-h post-injection. The rats with blood glucose level above 350 mg/dL were considered to be diabetic. Genistein and ISP were supplemented in the diet for 3 weeks. The supplementation of genistein and ISP increased the plasma insulin level but decreased the HbA(IC) level of the STZ-induced diabetic rats. The supplementation of genistein and ISP increased the glucokinase level of the STZ-induced diabetic rats. A significant reduction in glucose-6-phosphatase was observed in the groups treated with genistein and ISP in comparison with the diabetic control group. Hepatic superoxide dismutase, catalase, and glutathione peroxidase activities of the STZ-induced diabetic rats were significantly decreased in comparison with the control rats. Administering genistein and ISP to the STZ-induced diabetic rats significantly increased those enzyme activities. The concentration of thiobarbituric acid reactive substances in the STZ-induced diabetic rats was significantly elevated, while the genistein and ISP supplement decreased it to the control concentration. Genistein and ISP supplements seem to be beneficial for correcting the hyperglycemia and preventing diabetic complications.  相似文献   

20.
The aim of this study was to elucidate the effects of long-term intake of leucine in dietary protein malnutrition on muscle protein synthesis and degradation. A reduction in muscle mass was suppressed by leucine-supplementation (1.5% leucine) in rats fed protein-free diet for 7 days. Furthermore, the rate of muscle protein degradation was decreased without an increase in muscle protein synthesis. In addition, to elucidate the mechanism involved in the suppressive effect of leucine, we measured the activities of degradation systems in muscle. Proteinase activity (calpain and proteasome) and ubiquitin ligase mRNA (Atrogin-1 and MuRF1) expression were not suppressed in animals fed a leucine-supplemented diet, whereas the autophagy marker, protein light chain 3 active form (LC3-II), expression was significantly decreased. These results suggest that the protein-free diet supplemented with leucine suppresses muscle protein degradation through inhibition of autophagy rather than protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号