首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Ribosomes containing modifications in three regions of 23S rRNA, all of which are in proximity to the ribosomal peptidyltransferase center (PTC), were utilized previously as a source of S-30 preparations for in vitro protein biosynthesis experiments. When utilized in the presence of mRNAs containing UAG codons at predetermined positions + β-alanyl–tRNACUA, the modified ribosomes produced enhanced levels of full length proteins via UAG codon suppression. In the present study, these earlier results have been extended by the use of substituted β-amino acids, and direct evidence for β-amino acid incorporation is provided. Presently, five of the clones having modified ribosomes are used in experiments employing four substituted β-amino acids, including α-methyl-β-alanine, β,β-dimethyl-β-alanine, β-phenylalanine, and β-(p-bromophenyl)alanine. The β-amino acids were incorporated into three different positions (10, 18 and 49) of Escherichia coli dihydrofolate reductase (DHFR) and their efficiencies of suppression of the UAG codons were compared with those of β-alanine and representative α-l-amino acids. The isolated proteins containing the modified β-amino acids were subjected to proteolytic digestion, and the derived fragments were characterized by mass spectrometry, establishing that the β-amino acids had been incorporated into DHFR, and that they were present exclusively in the anticipated peptide fragments. DHFR contains glutamic acid in position 17, and it has been shown previously that Glu-C endoproteinase can hydrolyze DHFR between amino acids residues 17 and 18. The incorporation of β,β-dimethyl-β-alanine into position 18 of DHFR prevented this cleavage, providing further evidence for the position of incorporation of the β-amino acid.  相似文献   

2.
Specificity of the ribosomal A site for aminoacyl-tRNAs   总被引:1,自引:1,他引:0       下载免费PDF全文
Although some experiments suggest that the ribosome displays specificity for the identity of the esterified amino acid of its aminoacyl-tRNA substrate, a study measuring dissociation rates of several misacylated tRNAs containing the GAC anticodon from the A site showed little indication for such specificity. In this article, an expanded set of misacylated tRNAs and two 2′-deoxynucleotide-substituted mRNAs are used to demonstrate the presence of a lower threshold in koff values for aa-tRNA binding to the A site. When a tRNA binds sufficiently well to reach this threshold, additional stabilizing effects due to the esterified amino acid or changes in tRNA sequence are not observed. However, specificity for different amino acid side chains and the tRNA body is observed when tRNA binding is sufficiently weaker than this threshold. We propose that uniform aa-tRNA binding to the A site may be a consequence of a conformational change in the ribosome, induced by the presence of the appropriate combination of contributions from the anticodon, amino acid and tRNA body.  相似文献   

3.
The proper arrangement of amino acids in a protein determines its proper function, which is vital for the cellular metabolism. This indicates that the process of peptide bond formation requires high fidelity. One of the most important processes for this fidelity is kinetic proofreading. As biochemical experiments suggest that kinetic proofreading plays a major role in ensuring the fidelity of protein synthesis, it is not certain whether or not a misacylated tRNA would be corrected by kinetic proofreading during the peptide bond formation. Using 2-layered ONIOM (QM/MM) computational calculations, we studied the behavior of misacylated tRNAs and compared the results with these for cognate aminoacyl-tRNAs during the process of peptide bond formation to investigate the effect of nonnative amino acids on tRNAs. The difference between the behavior of initiator tRNAi met compared to the one for the elongator tRNAs indicates that only the initiator tRNAi met specifies the amino acid side chain.  相似文献   

4.
The proper arrangement of amino acids in a protein determines its proper function, which is vital for the cellular metabolism. This indicates that the process of peptide bond formation requires high fidelity. One of the most important processes for this fidelity is kinetic proofreading. As biochemical experiments suggest that kinetic proofreading plays a major role in ensuring the fidelity of protein synthesis, it is not certain whether or not a misacylated tRNA would be corrected by kinetic proofreading during the peptide bond formation. Using 2-layered ONIOM (QM/MM) computational calculations, we studied the behavior of misacylated tRNAs and compared the results with these for cognate aminoacyl-tRNAs during the process of peptide bond formation to investigate the effect of nonnative amino acids on tRNAs. The difference between the behavior of initiator tRNA(i) (met) compared to the one for the elongator tRNAs indicates that only the initiator tRNA(i) (met) specifies the amino acid side chain.  相似文献   

5.
Ribosomally mediated protein biosynthesis is limited to α-L-amino acids. A strong bias against β-L-amino acids precludes their incorporation into proteins in vivo and also in vitro in the presence of misacylated β-aminoacyl-tRNAs. Nonetheless, earlier studies provide some evidence that analogues of aminoacyl-tRNAs bearing β-amino acids can be accommodated in the ribosomal A-site. Both functional and X-ray crystallographic data make it clear that the exclusion of β-L-amino acids as participants in protein synthesis is a consequence of the architecture of the ribosomal peptidyltransferase center (PTC). To enable the reorganization of ribosomal PTC architecture through mutagenesis of 23S rRNA, a library of modified ribosomes having modifications in two regions of the 23S rRNA (2057-2063 and 2496-2507 or 2582-2588) was prepared. A dual selection procedure was used to obtain a set of modified ribosomes able to carry out protein synthesis in the presence β-L-amino acids and to provide evidence for the utilization of such amino acids, in addition to α-L-amino acids. β-Puromycin, a putative mimetic for β-aminoacyl-tRNAs, was used to select modified ribosome variants having altered PTC architectures, thus potentially enabling incorporation of β-L-amino acids. Eight types of modified ribosomes altered within the PTC have been selected by monitoring improved sensitivity to β-puromycin in vivo. Two of the modified ribosomes, having 2057AGCGUGA2063 and 2502UGGCAG2507 or 2502AGCCAG2507, were able to suppress UAG codons in E. coli dihydrofolate reductase (DHFR) and scorpion Opisthorcanthus madagascariensis peptide IsCT mRNAs in the presence of β-alanyl-tRNA(CUA).  相似文献   

6.
Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin-tRNA conjugate, in which the 3'-terminal A unit was replaced by puromycin, was used. The puromycin-tRNA conjugate was fused to a C-terminus of streptavidin through the puromycin moiety in the ribosome. The streptavidin-puromycin-tRNA fusion molecule was collected and brought to the next round after amplification of the tRNA sequence. We applied this system to select efficient frameshift suppressor tRNAs from a tRNA library with a randomly mutated anticodon loop derived from yeast tRNA CCCG Phe. After three rounds of the selection, we obtained novel frameshift suppressor tRNAs which had high decoding activity and good orthogonality against endogenous aminoacyl-tRNA synthetases. These results demonstrate that the in vitro selection system developed here is useful to obtain highly active tRNAs for the incorporation of non-natural amino acid from a tRNA library.  相似文献   

7.
Despite remarkable recent progress in our chemical and structural understanding of the mechanisms of peptide bond formation by the ribosome, only very limited information is available about whether amino acid side chains affect the rate of peptide bond formation. Here, we generated a series of peptidyl-tRNAs that end with different tRNA-attached amino acids in the P-site of the Escherichia coli ribosome and compared their reactivity with puromycin, a rapidly A-site-accessing analog of aminoacyl-tRNAs. Among the 20 amino acids examined, proline was found to receive exceptionally slow peptidyl transfer to puromycin. These results raise a possibility that the peptidyl transferase activity of the ribosome may have some specificity with regard to the P-site amino acids.  相似文献   

8.
Proteins, the main players in current biological systems, are produced on ribosomes by sequential amide bond (peptide bond) formations between amino-acid-bearing tRNAs. The ribosome is an exquisite super-complex of RNA-proteins, containing more than 50 proteins and at least 3 kinds of RNAs. The combination of a variety of side chains of amino acids (typically 20 kinds with some exceptions) confers proteins with extraordinary structure and functions. The origin of peptide bond formation and the ribosome is crucial to the understanding of life itself. In this article, a possible evolutionary pathway to peptide bond formation machinery (proto-ribosome) will be discussed, with a special focus on the RNA minihelix (primordial form of modern tRNA) as a starting molecule. Combining the present data with recent experimental data, we can infer that the peptidyl transferase center (PTC) evolved from a primitive system in the RNA world comprising tRNA-like molecules formed by duplication of minihelix-like small RNA.  相似文献   

9.
Here we describe a novel technology that allows users to charge nonnatural amino acids onto any tRNA. This technology is based on a resin-immobilized ribozyme system, called Flexiresin. It enables users to readily and rapidly synthesize misacylated tRNAs with a wide variety of phenylalanine analogs. Since Flexiresin is reusable and little effort is necessary for regeneration, it is economical and convenient. Moreover, it can adapt to virtually any tRNA chosen by the user, and can therefore be applied to not only a single site mutation but also multiple sites with designated nonnatural amino acids when both the amber and programmed frame-shift mutations are utilized. The original ribozyme utilized for Flexiresin was artificially generated in vitro, and thus the technology in principle could be broadened from Phe analogues to essentially any amino acid.  相似文献   

10.
The human SBDS gene and its yeast ortholog SDO1 encode essential proteins that are involved in ribosome biosynthesis. SDO1 has been implicated in recycling of the ribosomal biogenesis factor Tif6p from pre-66S particles as well as in translation activation of 60S ribosomes. The SBDS protein is highly conserved, containing approximately 250 amino acid residues in animals, fungi and Archaea, while SBDS orthologs of plants and a group of protists contain an extended C-terminal region. In this work, we describe the characterization of the Trypanosoma cruzi SBDS ortholog (TcSBDS). TcSBDS co-fractionates with polysomes in sucrose density gradients, which is consistent with a role in ribosome biosynthesis. We show that TcSBDS contains a C-terminal extension of 200 amino acids that displays the features of intrinsically disordered proteins as determined by proteolytic, circular dichroism and NMR analyses. Interestingly, the C-terminal extension is responsible for TcSBDS–RNA interaction activity in electrophoretic mobility shift assays. This finding suggests that Trypanosomatidae and possibly also other organisms containing SBDS with extended C-terminal regions have evolved an additional function for SBDS in ribosome biogenesis.  相似文献   

11.
To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNALeu. It is known that the fidelity of prokaryotic LeuRS depends on multiple editing pathways to clear the incorrect intermediates and products in the every step of aminoacylation reaction. Here, we obtained human cytoplasmic LeuRS (hcLeuRS) and tRNALeu (hctRNALeu) with high activity from Escherichia coli overproducing strains to study the synthetic and editing properties of the enzyme. We revealed that hcLeuRS could adjust its editing strategy against different non-cognate amino acids. HcLeuRS edits norvaline predominantly by post-transfer editing; however, it uses mainly pre-transfer editing to edit α-amino butyrate, although both amino acids can be charged to tRNALeu. Post-transfer editing as a final checkpoint of the reaction was very important to prevent mis-incorporation in vitro. These results provide insight into the modular editing pathways created to prevent genetic code ambiguity by evolution.  相似文献   

12.
Binding of misacylated tRNAs to the ribosomal A site   总被引:1,自引:0,他引:1       下载免费PDF全文
To test whether the ribosome displays specificity for the esterified amino acid and the tRNA body of an aminoacyl-tRNA (aa-tRNA), the stabilities of 4 correctly acylated and 12 misacylated tRNAs in the ribosomal A site were determined. By introducing the GAC (valine) anticodon into each tRNA, a constant anticodon.codon interaction was maintained, thus removing concern that different anticodon.codon strengths might affect the binding of the different aa-tRNAs to the A site. Surprisingly, all 16 aa-tRNAs displayed similar dissociation rate constants from the A site. These results suggest that either the ribosome is not specific for different amino acids and tRNA bodies when intact aa-tRNAs are used or the specificity for the amino acid side chain and tRNA body is masked by a conformational change upon aa-tRNA release.  相似文献   

13.
1. Incubation of washed cells of Staphylococcus aureus with [1-14C]glycerol results in the incorporation of glycerol into the lipid fraction of the cells. The rate of incorporation is increased by the presence of glucose and amino acids. The presence of amino acids increases incorporation into the fraction containing O-amino acid esters of phosphatidylglycerol. 2. Glycerol, incorporated into washed cells by incubation with glycerol, glucose and amino acids, is rapidly released from the lipid fraction when cells are incubated at low suspension densities in buffer. 3. Of nine amino acids tested, only lysine is significantly incorporated into the lipid fraction. The incorporation is increased by the presence of glycerol, glucose and other amino acids, especially aspartate and glutamate. 4. The incorporation of lysine is increased by the addition of puromycin at concentrations that inhibit protein synthesis. Chloramphenicol does not increase the incorporation of lysine but abolishes the enhancing effect of puromycin. 5. The enhancing effect of puromycin is accompanied by a similar increase in the incorporation of lysine into the fraction soluble in hot trichloroacetic acid. 6. Lysine is incorporated into the lipid fraction that contains O-amino acid esters of phosphatidylglycerol and corresponds in properties to phosphatidylglyceryl-lysine. 7. Lysine is rapidly released from the lipid of cells incubated in buffer only at low suspension densities. 8. Incubation of cells with the phosphatidylglyceryl-lysine fraction does not lead to the appearance of free lysine or to incorporation into the fraction insoluble in hot trichloroacetic acid.  相似文献   

14.
Ohtsuki T  Manabe T  Sisido M 《FEBS letters》2005,579(30):6769-6774
The ability to introduce non-natural amino acids into proteins opens up new vistas for the study of protein structure and function. This approach requires suppressor tRNAs that deliver the non-natural amino acid to a ribosome associated with an mRNA containing an expanded codon. The suppressor tRNAs must be absolutely protected from aminoacylation by any of the aminoacyl-tRNA synthetases in the protein synthesizing system, or a natural amino acid will be incorporated instead of the non-natural amino acid. Here, we found that some tRNAs with non-standard structures could work as efficient four-base suppressors fulfilling the above orthogonal conditions. Using these tRNAs, we successfully demonstrated incorporation of three different non-natural amino acids into a single protein.  相似文献   

15.
The ribosome translates the genetic information of an mRNA molecule into a sequence of amino acids. The ribosome utilizes tRNAs to connect elements of the RNA and protein worlds during protein synthesis, i.e. an anticodon as a unit of genetic information with the corresponding amino acid as a building unit of proteins. Three tRNA-binding sites are located on the ribosome, termed the A, P and E sites. In recent years the tRNA-binding sites have been localized on the ribosome by three different techniques, small-angle neutron scattering, cryo-electron microscopy and X-ray analyses of 70 S crystals. These high-resolution glimpses into various ribosomal states together with a large body of biochemical data reveal an intricate interplay between the tRNAs and the three ribosomal binding sites, providing an explanation for the remarkable features of the ribosome, such as the ability to select the correct ternary complex aminoacyl-tRNA.EF-Tu.GTP out of more than 40 extremely similar tRNA complexes, the precise movement of the tRNA(2).mRNA complex during translocation and the maintenance of the reading frame.  相似文献   

16.
Novel methods of incorporating non-native amino acids and stable isotope labels into proteins using modified tRNAs present new opportunities for basic research and biotechnology that go beyond conventional site-directed mutagenesis. tRNA-mediated protein engineering relies on the development of novel tRNAs and their misacylation with custom-designed amino acids, the recognition of special codons by the tRNAs, and the efficient expression of these modified proteins. Recent progress has been made in all these areas, including the development of more effective suppresor tRNAs and higher yield translation systems, leading to a variety of novel applications.  相似文献   

17.
Procedures are described for the purification of calf thymus nuclei using mild hypotonit shock to break intact cells, and layering techniques to remove cytoplasmic debris. Ficolc (a high polymer of sucrose) was dissolved in isotonic sucrose to give dense solutions suitable for gradient centrifugation. The method yields nuclei which can incorporate amino acids in vitro. Thymus nuclei isolated under isotonic conditions were incubated with C14-amino acids and later purified by centrifugation through dense sucrose solutions. The distribution of radioactivity in different nuclear proteins was measured and it was found that isotopic amino acids are actively incorporated into characteristically chromosomal proteins, such as the arginine-rich and lysine-rich histones. Protein synthesis in the nucleus is markedly inhibited by puromycin and by agents, such as 2,4-dinitrophenol, which inhibit ATP synthesis. The synthesis of histones is also inhibited by puromycin, but the uptake of several amino acids into the lysine-rich histone fraction seems less sensitive to puromycin inhibition than is uptake into the arginine-rich histones or other proteins of the nucleus. High resolution autoradiography using tritiated leucine and observing grain distribution over thin sections of isolated nuclei and whole cells shows that amino acid incorporation occurs within the nucleus and is not due to cytoplasmic contamination.  相似文献   

18.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

19.
Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono‐ and diprolyl‐tRNAs. These structures provide a high‐resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.  相似文献   

20.
Chemical diversity of protein molecules can be expanded through in vitro incorporation of unnatural amino acids in response to a nonsense codon. Chemically misacylated tRNAs are used for tethering unnatural amino acids to a nonsense-mutated target codon (nonsense suppression). In the course of experiments to introduce S-(2-nitrobenzyl)cysteine (NBC) into a targeted location of human erythropoietin, we found that NBC incorporates more efficiently at lower temperatures. In addition, at a fixed reaction temperature, more NBC was incorporated with a reduced supply of ATP. Since the rate of peptide elongation was remarkably higher at the elevated temperature or with enhanced supply of ATP, these results indicate that the efficiency of nonsense suppression is inversely correlated to the peptide elongation rate. Therefore, maximal yield of nonsense-suppressed proteins is obtained at a compromised elongation rate. The present result will offer a primary guideline to optimize the reaction conditions for in vitro production of protein molecules containing unnatural amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号