首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The NADH:ubiquinone oxidoreductase couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. It contains a 110 Å long helix running parallel to the membrane part of the complex. Deletion of the helix resulted in a reduced H+/e? stoichiometry indicating its direct involvement in proton translocation. Here, we show that the mutation of the conserved amino acid D563L, which is part of the horizontal helix of the Escherichia coli complex I, leads to a reduced H+/e? stoichiometry. It is discussed that this residue is involved in transferring protons to the membranous proton translocation site.  相似文献   

2.
Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.  相似文献   

3.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na(+)-NQR with its electron acceptor, ubiquinone.  相似文献   

4.
Complex I (NADH:ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 44 protein subunits with one arm buried in the inner membrane of the mitochondrion and the orthogonal arm protruding about 100 Å into the matrix. The protruding arm contains the binding sites for NADH, the primary acceptor of electrons flavin mononucleotide (FMN), and a chain of seven iron-sulfur clusters that carries the electrons one at a time from FMN to a coenzyme Q molecule bound in the vicinity of the junction between the two arms. In the structure of the closely related bacterial enzyme from Thermus thermophilus, the quinone is thought to bind in a tunnel that spans the interface between the two arms, with the quinone head group close to the terminal iron-sulfur cluster, N2. The tail of the bound quinone is thought to extend from the tunnel into the lipid bilayer. In the mammalian enzyme, it is likely that this tunnel involves three of the subunits of the complex, ND1, PSST, and the 49-kDa subunit. An arginine residue in the 49-kDa subunit is symmetrically dimethylated on the ω-NG and ω-NG′ nitrogen atoms of the guanidino group and is likely to be close to cluster N2 and to influence its properties. Another arginine residue in the PSST subunit is hydroxylated and probably lies near to the quinone. Both modifications are conserved in mammalian enzymes, and the former is additionally conserved in Pichia pastoris and Paracoccus denitrificans, suggesting that they are functionally significant.  相似文献   

5.
The respiratory complex I couples the electron transfer from NADH to ubiquinone with a translocation of protons across the membrane. Its nucleotide-binding site is made up of a unique Rossmann fold to accommodate the binding of the substrate NADH and of the primary electron acceptor flavin mononucleotide. Binding of NADH includes interactions of the hydroxyl groups of the adenosine ribose with a conserved glutamic acid residue. Structural analysis revealed that due to steric hindrance and electrostatic repulsion, this residue most likely prevents the binding of NADPH, which is a poor substrate of the complex. We produced several variants with mutations at this position exhibiting up to 200-fold enhanced catalytic efficiency with NADPH. The reaction of the variants with NAD(P)H is coupled with proton translocation in an inhibitor-sensitive manner. Thus, we have created an energy-converting NADPH:ubiquinone oxidoreductase, an activity so far not found in nature. Remarkably, the oxidation of NAD(P)H by the variants leads to an enhanced production of reactive oxygen species.  相似文献   

6.
Data concerning the temperature dependence of ouabain-sensitive (Na+ + K+)-activated ATPase have enabled estimates of the apparent activation energies of this process to be obtained. Arrhenius plots show a point of inflection at about 20 °; at higher temperatures the activation energy is about 13.5 kcal/mole while below this temperature the value increases to 28.5 kcal/mole. Storage at −5 ° or reduction in total cation concentration without alteration of the Na+:K+ ratio causes no significant change in these values, although the specific activity is markedly reduced. Reduction in the sodium concentration alone, however, increases the apparent activation energy at lower temperatures. These results support the hypothesis that two independent processes are involved in ATP hydrolysis, one operating above the critical temperature and one operating below this temperature. Storage, or reduction in the concentrations of both sodium and potassium ions, appears to reduce the number of functional ATPase units, without significantly altering the properties of those which can still hydrolyze ATP. Reduction in the sodium concentration alone, however, may also cause some inhibition of all units. This is more marked at lower temperatures, and may arise from competition by potassium for sodium-binding sites.  相似文献   

7.
CXCR4 and CCR5 are the principal coreceptors for human immunodeficiency virus type-1 (HIV-1) infection. Previously, mutagenesis of CXCR4 identified single amino acid changes that either impaired CXCR4's coreceptor activity for CXCR4-dependent (X4) isolate envelope glycoproteins (Env) or expanded its activity, allowing it to serve as a functional coreceptor for CCR5-dependent (R5) isolates. The most potent of these point mutations was an alanine substitution for the aspartic acid residue at position 187 in extracellular loop 2 (ecl-2), and here we show that this mutation also permits a variety of primary R5 isolate Envs, including those of other subtypes (clades), to employ it as a coreceptor. We also examined the corresponding region of CCR5 and demonstrate that the substitution of the serine residue in the homologous ecl-2 position with aspartic acid impairs CCR5 coreceptor activity for isolates across several clades. These results highlight a homologous and critical element in ecl-2, of both the CXCR4 and CCR5 molecules, for their respective coreceptor activities. Charge elimination expands CXCR4 coreceptor activity, while a similar charge introduction can destroy the coreceptor function of CCR5. These findings provide further evidence that there are conserved elements in both CXCR4 and CCR5 involved in coreceptor function.  相似文献   

8.
Ligand-gated ion channels (LGICs) mediate rapid chemical neurotransmission. This gene superfamily includes the nicotinic acetylcholine, GABAA/C, 5-hydroxytryptamine type 3, and glycine receptors. A signature disulfide loop (Cys loop) in the extracellular domain is a structural motif common to all LGIC member subunits. Here we report that a highly conserved aspartic acid residue within the Cys loop at position 148 (Asp-148) of the glycine receptor alpha1 subunit is critical in the process of receptor activation. Mutation of this acidic residue to the basic amino acid lysine produces a large decrease in the potency of glycine, produces a decrease in the Hill slope, and converts taurine from a full agonist to a partial agonist; these data are consistent with a molecular defect in the receptor gating mechanism. Additional mutation of Asp-148 shows that alterations in the EC50 for agonists are dependent upon the charge of the side chain at this position and not molecular volume, polarity, or hydropathy. This study implicates negative charge at position Asp-148 as a critical component of the process in which agonist binding is coupled to channel gating. This finding adds to an emerging body of evidence supporting the involvement of the Cys loop in the gating mechanism of the LGICs.  相似文献   

9.
Complex I (NADH:ubiquinone oxidoreductase) has a central function in oxidative phosphorylation and hence for efficient ATP production in most prokaryotic and eukaryotic cells. This huge membrane protein complex transfers electrons from NADH to ubiquinone and couples this exergonic redox reaction to endergonic proton pumping across bioenergetic membranes. Although quinone reduction seems to be critical for energy conversion, this part of the reaction is least understood. Here we summarize and discuss experimental evidence indicating that complex I contains an extended ubiquinone binding pocket at the interface of the 49-kDa and PSST subunits. Close to iron–sulfur cluster N2, the proposed immediate electron donor for ubiquinone, a highly conserved tyrosine constitutes a critical element of the quinone reduction site. A possible quinone exchange path leads from cluster N2 to the N-terminal β-sheet of the 49-kDa subunit. We discuss the possible functions of a highly conserved HRGXE motif and a redox–Bohr group associated with cluster N2. Resistance patterns observed with a large number of point mutations suggest that all types of hydrophobic complex I inhibitors also act at the interface of the 49-kDa and the PSST subunit. Finally, current controversies regarding the number of ubiquinone binding sites and the position of the site of ubiquinone reduction are discussed.  相似文献   

10.
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.  相似文献   

11.
In Saccharomyces cerevisiae, the trans-membrane helix of Qcr8p, the ubiquinone binding protein of complex III, contributes to the Q binding site. In wild-type cells, residue 62 of the helix is non-polar (proline). Substitution of proline 62 with a polar, uncharged residue does not impair the ability of the cells to respire, complex III assembly is unaffected, ubiquinone occupancy of the Q binding site is unchanged, and mitochondrial ubiquinone levels are in the wild-type range. Substitution with a +1 charged residue is associated with partial respiratory competence, impaired complex III assembly, and loss of cytochrome b. Although ubiquinone occupancy of the Q binding site is similar to wild-type, total mitochondrial ubiquinone doubled in these mutants. Mutants with a +2 charged substitution at position 62 are unable to respire. These results suggest that the accumulation of ubiquinone in the mitochondria may be a compensatory mechanism for impaired electron transport at cytochrome b.  相似文献   

12.
Abstract The MukB protein is essential for chromosome partitioning in Escherichia coli and consists of 1484 amino acid residues (170 kDa). We have determined the base changes at the mutated sites of the mukB106 mutant and a newly isolated mutant, mukB33 . These mutant mukB genes were each found to carry a single base-pair transition which leads to an amino acid substitution; a serine residue at position 33 was changed to phenylalanine in the case of mukB106 , and an aspartic acid residue at position 1201 was changed to asparagine in the case of mukB33 .  相似文献   

13.
d-Alanylation of lipoteichoic acids modulates the surface charge and ligand binding of the Gram-positive cell wall. Disruption of the bacterial dlt operon involved in teichoic acid alanylation, as well as inhibition of the DltA (d-alanyl carrier protein ligase) protein, has been shown to render the bacterium more susceptible to conventional antibiotics and host defense responses. The DltA catalyzes the adenylation and thiolation reactions of d-alanine. This enzyme belongs to a superfamily of AMP-forming domains such as the ubiquitous acetyl-coenzyme A synthetase. We have determined the 1.9-Å-resolution crystal structure of a DltA protein from Bacillus cereus in complex with ATP. This structure sheds light on the geometry of the bound ATP. The invariant catalytic residue Lys492 appears to be mobile, suggesting a molecular mechanism of catalysis for this superfamily of enzymes. Specific roles are also revealed for two other invariant residues: the divalent cation-stabilizing Glu298 and the β-phosphate-interacting Arg397. Mutant proteins with a glutamine substitution at position 298 or 397 are inactive.  相似文献   

14.
The type III connecting segment (IIICS) within fibronectin is the major binding site for the integrin α4β1. Most integrin ligands have an essential acidic residue within their integrin binding site, in IIICS this residue is hypothesized to be the aspartic acid at position 21. Alanine scanning mutagenesis was used to determine the amino acid residues within the intact IIICS domain required for interaction with α4β1. IIICS was cloned and expressed as a fusion protein with glutathione S-transferase. This recombinant form of IIICS supports the adhesion of CHO cells that express human α4β1in a cation dependent manner. Alanine scanning mutagenesis of the EILDVP sequence in recombinant IIICS demonstrated that only two of these residues are critical for adhesion of α4β1expressing cells. Mutations of leucine at position 20 and aspartic acid at position 21 to alanine significantly reduced cell adhesion. Conservative mutations of aspartic acid at position 21 to asparagine or glutamic acid also reduced the ability of the recombinant protein to support cell adhesion, although not to the same extent as the corresponding alanine replacement. Most importantly, we show that although the mutation of asp 21 impairs cell adhesion, an examination of cell adhesion as a function of time demonstrated that asp 21 is not necessary for cell adhesion through α4β1. In comparison to wild type IIICS, the asp 21 to ala mutant supported minimal adhesion at early time points (10-30 min.), but was equivalent to wild type IIICS in supporting adhesion over one hour.  相似文献   

15.
The mitochondrial, proton-pumping NADH:ubiquinone oxidoreductase consists of at least 35 subunits whose synthesis is divided between the cytosol and mitochondria; this complex I catalyzes the first steps of mitochondrial electron transfer and proton translocation. Radiolabel from [(3)H]myristic acid was incorporated by Neurospora crassa into the mitochondrial-encoded, approximately 70 kDa ND5 subunit of NADH dehydrogenase, as shown by immunoprecipitation. This myristate apparently was linked to the peptide through an amide linkage at an invariant lysine residue (Lys546), based upon analyses of proteolysis products. The myristoylated lysine residue occurs in the predicted transmembrane helix 17 (residues 539-563) of ND5. A consensus amino acid sequence around this conserved residue exists in homologous subunits of NADH dehydrogenase. Cytochrome c oxidase subunit 1, in all prokaryotes and eukaryotes, contains this same consensus sequence surrounding the lysine which is myristoylated in N. crassa.  相似文献   

16.
An homology model of Candida methylica formate dehydrogenase (cmFDH) was constructed based on the Pseudomonas sp. 101 formate dehydrogenase (psFDH) structure. An aspartic acid residue in the model was predicted to interact with the adenine ribose of the NAD cofactor, in common with many NAD-dependent oxoreductases. Replacement of this aspartic acid residue by serine in cmFDH removed the absolute requirement for NAD over NADP shown by the wild type enzyme. Taken with similar results shown by d- and l-lactate dehydrogenases, this suggests that an aspartic acid in this position is a major determinant of coenzyme specificity in NAD/NADP-dependent dehydrogenases.  相似文献   

17.
Lin W 《Plant physiology》1984,74(2):219-222
Recent experiments show that exogenous NADH increases the O2 consumption and uptake of inorganic ions into isolated corn (Zea mays L. Pioneer Hybrid 3320) root protoplasts (Lin 1982, Proc Natl Acad Sci USA 79: 3773-3776). A mild treatment of protoplasts with trypsin released most of the NADH oxidation system from the plasmalemma (Lin 1982 Plant Physiol 70: 326-328). Further studies on this system showed that exogenous NADH (1.5 millimolar) tripled the proton efflux from the protoplasts thus generating a greater electrochemical proton gradient across the plasmalemma. Trypsin also released ubiquinone (11.95 nanomoles per milligrams protein) but not flavin or cytochrome from the system. Kinetic analyses showed that 1.5 millimolar NADH quadrupled Vmax of the mechanism I (saturable) component of K+ uptake, while Km was not affected. Diethylstibestrol and vanadate inhibited basal (ATPase-mediated) K+ influx and H+ efflux, while NADH-stimulated K+ uptake was not or only slightly inhibited. p-Chloromercuribenzene-sulfonic acid, N,N′-dicyclohexylcarbodiimide, ethidium bromide, and oligomycin inhibited both ATPase- and NADH-mediated H+ and K+ fluxes. A combination of 10 millimolar fusicoccin and 1.5 millimolar NADH gave an 11-fold increase of K+ influx and a more than 3-fold increase of H+ efflux. It is concluded that a plasmalemma ATPase is not involved in the NADH-mediated ion transport mechanism. NADH oxidase is a -SH containing enzyme (protein) and the proton channel is an important element in this transport system. Fusicoccin synergistically stimulates the effect of NADH on K+ uptake.  相似文献   

18.
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and remains by far the least understood enzyme complex of the respiratory chain. It consists of a peripheral arm harbouring all known redox active prosthetic groups and a membrane arm with a yet unknown number of proton translocation sites. The ubiquinone reduction site close to iron-sulfur cluster N2 at the interface of the 49-kDa and PSST subunits has been mapped by extensive site directed mutagenesis. Independent lines of evidence identified electron transfer events during reduction of ubiquinone to be associated with the potential drop that generates the full driving force for proton translocation with a 4H+/2e stoichiometry. Electron microscopic analysis of immuno-labelled native enzyme and of a subcomplex lacking the electron input module indicated a distance of 35-60 Å of cluster N2 to the membrane surface. Resolution of the membrane arm into subcomplexes showed that even the distal part harbours subunits that are prime candidates to participate in proton translocation because they are homologous to sodium/proton antiporters and contain conserved charged residues in predicted transmembrane helices. The mechanism of redox linked proton translocation by complex I is largely unknown but has to include steps where energy is transmitted over extremely long distances. In this review we compile the available structural information on complex I and discuss implications for complex I function.  相似文献   

19.
Lipoxygenase (LOX) is the key enzyme involved in the synthesis of oxylipins as signaling compounds that are important for cell growth and development, inflammation, and pathogenesis in various organisms. The regiospecificity of LOX from Myxococcus xanthus, a gram-negative bacterium, was investigated. The enzyme catalyzed oxygenation at the n-9 position in C20 and C22 polyunsaturated fatty acids (PUFAs) to form 12S- and 14S-hydroxy fatty acids (HFAs), respectively, and oxygenation at the n-6 position in C18 PUFAs to form 13-HFAs. The 12S-form products of C20 and C22 PUFAs by M. xanthus LOX is the first report of bacterial LOXs. The residues involved in regiospecificity were determined to be Thr397, Ala461, and Ile664 by analyzing amino acid alignment and a homology model based on human arachidonate 15-LOX with a sequence identity of 25%. Among these variants, the regiospecificity of the T397Y variant for C20 and C22 PUFAs was changed. This may be because of the reduced size of the substrate-binding pocket by substitution of the smaller Thr to the larger Tyr residue. The T397Y variant catalyzed oxygenation at the n-6 position in C20 and C22 PUFAs to form 15- and 17-hydroperoxy fatty acids, respectively. However, the oxygenation position of T397Y for C18 PUFAs was not changed. The discovery of bacterial LOX with novel regiospecificity will facilitate the biosynthesis of regiospecific?oxygenated signaling compounds.  相似文献   

20.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria. This enzyme is an analogous but not homologous counterpart of mitochondrial Complex I. Na+-NQR drives the same chemistry and also uses released energy to translocate ions across the membrane, but it pumps Na+ instead of H+. Most likely the mechanism of sodium pumping is quite different from that of proton pumping (for example, it could not accommodate the Grotthuss mechanism of ion movement); this is why the enzyme structure, subunits and prosthetic groups are completely special. This review summarizes modern knowledge on the structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases. The sequence of electron transfer through the enzyme cofactors and thermodynamic properties of those cofactors is discussed. The resolution of the intermediates of the catalytic cycle and localization of sodium-dependent steps are combined in a possible molecular mechanism of sodium transfer by the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号