首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Despite highest standards in nerve repair, functional recovery following nerve transection still remains unsatisfactory. Nonspecific reinnervation of target organs caused by misdirected axonal growth at the repair site is regarded as one reason for a poor functional outcome. This study was conducted to establish a method for preventing aberrant reinnervation between transected and repaired nerves in adjacency. Rat sciatic nerve was transected and repaired as follows: epineural sutures of the sciatic nerve (group A, n = 6), fascicular repair of tibial and peroneal nerves respectively (group B, n = 8), and, as in group B, separating both nerves using a pedicle fat flap as barrier (group C, n = 8). As control only, the tibial nerve was transected and repaired (group D, n = 5). Muscle contraction force of the gastrocnemius muscle was significantly higher in group C as compared with groups A and B after 4 months. Muscle weight showed significantly lower values in group A as compared with groups B, C, and D. Histologic examination in group C revealed little growth of axons from the tibial to the peroneal nerve and vice versa. This axon crossing was observed only when gaps between the fat cells were available. These findings were confirmed by a significantly lower rate of misdirected axonal growth as compared with groups A and B using sequential retrograde double labeling technique of the soleus motoneuron pool. We conclude that a pedicle fat flap significantly prevents aberrant reinnervation between repaired adjacent nerves resulting in significantly improved motor recovery in rats. Clinically, this is of importance for brachial plexus, sciatic nerve, and facial nerve repair.  相似文献   

2.
Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes.  相似文献   

3.
Injuries and diseases that occur in the nervous system are common and have few effective treatments. Previous studies have shown that quercetin has a therapeutic effect on nervous system injuries, but its potential effects on and mechanisms of action related to behavioral recovery and axonal regrowth have not been investigated. Here, we showed that quercetin administration promotes behavioral recovery following sciatic nerve-crush injury in mice. Long-term evaluation showed that mice administered 20 mg·kg−1·day−1 quercetin for 35 days had a greater sensorimotor recovery compared with all other treatment groups. The mechanisms behind these effects were further investigated, and quercetin was found to regulate the expression of genes involved in regeneration and trophic support. Moreover, quercetin increased cyclic adenosine monophosphate expression and downstream pathway activation, which directly leads to neuronal growth activation in peripheral axon regeneration. In addition, quercetin enhanced axon remyelination, motor nerve conduction velocity and plantar muscle function, indicating that the degree of distal portion hypotrophy during the peripheral axon regeneration process was reduced. These results suggest that quercetin accelerates functional recovery by up-regulating neuronal intrinsic growth capacity and postponing distal atrophy. Overall, quercetin triggered multiple effects to promote behavioral recovery following sciatic nerve-crush injury in mice.  相似文献   

4.
Competition among axon terminals is usually considered to contribute to the formation of patterned synaptic connections. During axonal regeneration of motor neurons in the cockroach, leg muscles initially become innervated by appropriate and inappropriate motor neurons. All axon terminals from inappropriate neurons eventually are eliminated, resulting in the reformation of the original innervation pattern. Destruction of an identified motor neuron by the intracellular injection of pronase did not prevent the elimination of inappropriate axon terminals in the muscle normally innervated by that motor neuron. Therefore, competition does not play a role in the reinnervation of the leg muscles. This indicates a major role for specific cell-cell recognition.  相似文献   

5.
Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.  相似文献   

6.
C Li  X Zhang  R Cao  B Yu  H Liang  M Zhou  D Li  Y Wang  E Liu 《PloS one》2012,7(8):e42813

Objective

We aimed to investigate whether an innovative growth factor-laden scaffold composed of acellular sciatic nerve (ASN) and brain-derived neurotrophic factor (BDNF) could promote axonal regeneration and functional recovery after spinal cord injury (SCI).

Methods

Following complete transection at the thoracic level (T9), we immediately transplanted the grafts between the stumps of the severed spinal cords. We evaluated the functional recovery of the hindlimbs of the operated rats using the BBB locomotor rating scale system every week. Eight weeks after surgery, axonal regeneration was examined using the fluorogold (FG) retrograde tracing method. Electrophysiological analysis was carried out to evaluate the improvement in the neuronal circuits. Immunohistochemistry was employed to identify local injuries and recovery.

Results

The results of the Basso-Beattie-Bresnahan (BBB) scale indicated that there was no significant difference between the individual groups. The FG retrograde tracing and electrophysiological analyses indicated that the transplantation of ASN-BDNF provided a permissive environment to support neuron regeneration.

Conclusion

The ASN-BDNF transplantation provided a promising therapeutic approach to promote axonal regeneration and recovery after SCI, and can be used as part of a combinatory treatment strategy for SCI management.  相似文献   

7.
The expression of cytotactin, an extracellular matrix glycoprotein involved in morphogenesis and regeneration, was determined in the normal and regenerating neuromuscular system of the frog Rana temporaria. Cytotactin was expressed in adult brain and gut as two major components of Mr 190,000 and 200,000 and a minor form of higher molecular weight, but was almost undetectable in skeletal muscle extract. However, cytotactin was concentrated at the neuromuscular junctions as well as at the nodes of Ranvier. After nerve transection, cytotactin staining increased in the distal stump along the endoneurial tubes. In preparations of basal lamina sheaths of frog cutaneous pectoris muscle obtained by inducing the degeneration of both nerve and muscle fibers, cytotactin was found in dense accumulations at original synaptic sites. In order to define the role of cytotactin in axonal regeneration and muscle reinnervation, the effect of anti-cytotactin antibodies on the reinnervation of the basal lamina sheaths preparations was examined in vivo. In control preparations, regenerating nerve terminals preferentially reinnervate the original synaptic sites. In the presence of anti-cytotactin antibodies, axon regeneration occurred with normal fasciculation and branching but with altered preterminal nerve fibers pathways. Ultrastructural observations showed that synaptic basal laminae reinnervation was greatly delayed or inhibited. These results suggest that cytotactin plays a primordial role in synaptogenesis, at least during nerve regeneration and reinnervation in the adult neuromuscular system.  相似文献   

8.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

9.
Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p < 0.05). Evidences from retrograde labeling and immunohistochemistry analysis are further provided in support of improving axonal regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.  相似文献   

10.
A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n = 12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio = 1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n = 12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7(1/2) months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198) = 9.0144, P = .003, than for the transection injury model: F(1, 198) = 6.4826, P = .012. The Student-Newman-Keuls range test for each response day yielded significant differences (P < .05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery.  相似文献   

11.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

12.
Several factors have been proposed to account for poor motor recovery after prolonged denervation, including motor neuron cell death and incomplete or poor regeneration of motor fibers into the muscle. Both may result from failure of the muscle and the distal motor nerve stump to continue expression of neurotrophic factors following delayed muscle reinnervation. This study investigated whether regenerating motor or sensory axons modulate distal nerve neurotrophic factor expression. We found that transected distal tibial nerve up-regulated brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) mRNA, down-regulated neurotrophin-3 and ciliary neurotrophic factor mRNA, and that although these levels returned to normal with regeneration, the chronically denervated distal nerve stump continued to express these neurotrophic factors for at least 6 months following injury. A sensory nerve (the cutaneous saphenous nerve) sutured to distal tibial nerve lowered injury-induced BDNF and GDNF mRNA levels in distal stump, but repair with a mixed nerve (peroneal, containing muscle and cutaneous axons) was more effective. Repair with sensory or mixed nerves did not affect nerve growth factor or neurotrophin-3 expression. Thus, distal nerve contributed to a neurotrophic environment for nerve regeneration for at least 6 months, and sensory nerve repair helped normalize distal nerve neurotrophic factor mRNA expression following denervation. Furthermore, as BDNF and GDNF levels in distal stump increased following denervation and returned to control levels following reinnervation, their levels serve as markers for the status of regeneration by either motor or sensory nerve.  相似文献   

13.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

14.
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal‐regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2+/? neuron cultures, whereas homozygous Spry2?/? neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2+/? mice recovered faster in motor but not sensory testing paradigms (Spry2?/? mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP‐43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2?/? mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4‐positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long‐distance axon regeneration in injured peripheral nerves. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 217–231, 2015  相似文献   

15.
The functional recovery of skeletal muscles after peripheral nerve transection and microsurgical repair is generally incomplete. Several reinnervation abnormalities have been described even after nerve reconstruction surgery. Less is known, however, about the regenerative capacity of reinnervated muscles. Previously, we detected remarkable morphological and motor endplate alterations after inducing muscle necrosis and subsequent regeneration in the reinnervated rat soleus muscle. In the present study, we comparatively analyzed the morphometric properties of different fiber populations, as well as the expression pattern of myosin heavy chain isoforms at both immunohistochemical and mRNA levels in reinnervated versus reinnervated-regenerated muscles. A dramatic slow-to-fast fiber type transition was found in reinnervated soleus, and a further change toward the fast phenotype was observed in reinnervated-regenerated muscles. These findings suggest that the (fast) pattern of reinnervation plays a dominant role in the specification of fiber phenotype during regeneration, which can contribute to the long-lasting functional impairment of the reinnervated muscle. Moreover, because the fast II fibers (and selectively, a certain population of the fast IIB fibers) showed better recovery than did the slow type I fibers, the faster phenotype of the reinnervated-regenerated muscle seems to be actively maintained by selective yet undefined cues.  相似文献   

16.
The expression of B1 laminin and type IV collagen was followed in the microsurgically isolated endoneurium of transected rat sciatic nerves from 3 days until 8 weeks. Northern hybridizations revealed that after nerve transection the proximal stumps of denervated, as well as freely regenerating, nerves showed a markedly increased expression of laminin and type IV collagen which lasted from 3 days up to 8 weeks. In the distal stumps, close to the site of transection (2-7 mm), the expression of laminin, and to a certain extent that of type IV collagen, seemed to be enhanced if free axonal reinnervation was allowed. Further distally (10-15 mm), the patterns of B1 laminin and type IV collagen expression were similar in both experimental groups, so that an increased expression was noticed during the first 2 weeks. The present results suggest that laminin and type IV collagen gene expression is markedly different in different parts of transected rat sciatic nerve. During peripheral nerve regeneration, there is a long-lasting basement membrane gene expression in the proximal stump. In the distal part of the transected nerve, the axonal reinnervation possibly up-regulates, but is not essential for, the expression of B1 laminin and type IV collagen.  相似文献   

17.
Sensory testing, by providing stimuli for nociceptors of the foot, is a popular method of evaluating sensory regeneration after damage to the sciatic nerve in the rat. In the following study, 20 rats were submitted to double transection of the sciatic nerve. The subsequent 14 mm gap was repaired through guidance interponation. In order to evaluate nerve regeneration, sensory testing was performed additionally to other methods, which included motor testing, morphometry, and electron microscopic assessments of nerves. Somatosensory testing revealed that all animals exhibited next to the same amount of sensory reinnervation on their foot regardless of their experimental group. In motor tests, however, two out of the three experimental groups did not improve at all. These groups also failed to show neural regrowth in morphometric and electron microscopic assessments of the associated nerve. Retrograde tracing was able to prove the saphenous nerve as an alternative source of sensory reinnervation in animals with failed sciatic regeneration. This means that results of sensory testing in the rat should be treated with caution, taking into account the areas tested and the likelihood that in these areas saphenous sprouting could have taken place. Furthermore, it is strongly advised that somatosensory testing should be conducted only on toe 5.  相似文献   

18.
An incomplete motor nerve injury or a partial loss of motoneurons leads to a partial denervation of skeletal muscle. As part of a compensatory response, the remaining intact motoneurons undergo peripheral sprouting and increase their motor unit size. Our knowledge about the responses in the more proximal parts of these sprouting motoneurons is sparse, however. We investigated the effects of an incomplete transection of the medial gastrocnemius (MG) nerve in the adult cat on the morphology of the intramedullary axon and axon collateral systems of the remaining intact MG motoneurons. At twelve weeks following the partial transection of the MG nerve, intracellular recording and labeling techniques were used to deposit horseradish peroxidase into single intact MG motoneurons for detailed morphological studies. The light microscopic appearance and caliber of the intramedullary stem motor axons of the intact MG motoneurons were indistinguishable from controls. The number and size of the intramedullary motoraxon collateral systems were also unchanged. However, frequent and marked hypertrophy of the distal portions of the motoraxon collaterals was encountered. Electron microscopic studies of the hypertrophied collaterals demonstrated abnormal accumulations of disorganized neurofilaments arranged in bundles or whorls. The morphological changes were indistinguishable from the neurofilamentous hypertrophy that has previously been reported in Wallerian degeneration, in experimental and human motor neuron disease and in some regenerating axonal processes of spinal motoneurons. We conclude that, neurofilamentous hypertrophy of the intramedullary arbors of motor axons may also be part of a reactive and non-degenerative response in intact motoneurons undergoing compensatory peripheral sprouting.  相似文献   

19.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
Glial‐derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity‐based delivery of GDNF or NGF from fibrin‐filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity‐based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury. Biotechnol. Bioeng. 2010;106: 970–979. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号