首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
Bacterial pathogens must adapt/respond rapidly to changing environmental conditions. Ribonucleases (RNases) can be crucial factors contributing to the fast adaptation of RNA levels to different environmental demands. It has been demonstrated that the exoribonuclease polynucleotide phosphorylase (PNPase) facilitates survival of Campylobacter jejuni in low temperatures and favors swimming, chick colonization, and cell adhesion/invasion. However, little is known about the mechanism of action of other ribonucleases in this microorganism. Members of the RNB family of enzymes have been shown to be involved in virulence of several pathogens. We have searched C. jejuni genome for homologues and found one candidate that displayed properties more similar to RNase R (Cj-RNR). We show here that Cj-RNR is important for the first steps of infection, the adhesion and invasion of C. jejuni to eukaryotic cells. Moreover, Cj-RNR proved to be active in a wide range of conditions. The results obtained lead us to conclude that Cj-RNR has an important role in the biology of this foodborne pathogen.  相似文献   

2.
Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.  相似文献   

3.
Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.  相似文献   

4.
RNase E is a major intracellular endoribonuclease in many bacteria and participates in most aspects of RNA processing and degradation. RNase E requires a divalent metal ion for its activity. We show that only Mg2+ and Mn2+ will support significant rates of activity in vitro against natural RNAs, with Mn2+ being preferred. Both Mg2+ and Mn2+ also support cleavage of an oligonucleotide substrate with similar kinetic parameters for both ions. Salts of Ni2+ and Zn2+ permitted low levels of activity, while Ca2+, Co3+, Cu2+, and Fe2+ did not. A mutation to one of the residues known to chelate Mg2+, D346C, led to almost complete loss of activity dependent on Mg2+; however, the activity of the mutant enzyme was fully restored by the presence of Mn2+ with kinetic parameters fully equivalent to those of wild-type enzyme. A similar mutation to the other chelating residue, D303C, resulted in nearly full loss of activity regardless of metal ion. The properties of RNase E D346C enabled a test of the ionic requirements of RNase E in vivo. Plasmid shuffling experiments showed that both rneD303C (i.e., the rne gene encoding a D-to-C change at position 303) and rneD346C were inviable whether or not the selection medium was supplied with MnSO4, implying that RNase E relies on Mg2+ exclusively in vivo.  相似文献   

5.
Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel β-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.  相似文献   

6.
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the preferred species. However, neither the function(s) nor the number of metal ions involved in catalysis is known. To gain information on metal ion involvement in catalysis, the rate of cleavage of the model substrate R1.1 RNA was determined as a function of Mg2+ concentration. Single-turnover conditions were applied, wherein phosphodiester cleavage was the rate-limiting event. The measured Hill coefficient (nH) is 2.0 ± 0.1, indicative of the involvement of two Mg2+ ions in phosphodiester hydrolysis. It is also shown that 2-hydroxy-4H-isoquinoline-1,3-dione—an inhibitor of ribonucleases that employ two divalent metal ions in their catalytic sites—inhibits E.coli RNase III cleavage of R1.1 RNA. The IC50 for the compound is 14 μM for the Mg2+-supported reaction, and 8 μM for the Mn2+-supported reaction. The compound exhibits noncompetitive inhibitory kinetics, indicating that it does not perturb substrate binding. Neither the O-methylated version of the compound nor the unsubstituted imide inhibit substrate cleavage, which is consistent with a specific interaction of the N-hydroxyimide with two closely positioned divalent metal ions. A preliminary model is presented for functional roles of two divalent metal ions in the RNase III catalytic mechanism.  相似文献   

7.
RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease—the polynucleotide phosphorylase (PNPase)—in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms.  相似文献   

8.
The zinc-dependent leucine aminopeptidase from Pseudomonas putida (ppLAP) is an important enzyme for the industrial production of enantiomerically pure amino acids. To provide a better understanding of its structure-function relationships, the enzyme was studied by X-ray crystallography. Crystal structures of native ppLAP at pH 9.5 and pH 5.2, and in complex with the inhibitor bestatin, show that the overall folding and hexameric organization of ppLAP are very similar to those of the closely related di-zinc leucine aminopeptidases (LAPs) from bovine lens and Escherichia coli. At pH 9.5, the active site contains two metal ions, one identified as Mn2+ or Zn2+ (site 1), and the other as Zn2+ (site 2). By using a metal-dependent activity assay it was shown that site 1 in heterologously expressed ppLAP is occupied mainly by Mn2+. Moreover, it was shown that Mn2+ has a significant activation effect when bound to site 1 of ppLAP. At pH 5.2, the active site of ppLAP is highly disordered and the two metal ions are absent, most probably due to full protonation of one of the metal-interacting residues, Lys267, explaining why ppLAP is inactive at low pH. A structural comparison of the ppLAP-bestatin complex with inhibitor-bound complexes of bovine lens LAP, along with substrate modelling, gave clear and new insights into its substrate specificity and high level of enantioselectivity.  相似文献   

9.
RNase BN, the Escherichia coli homolog of RNase Z, was previously shown to act as both a distributive exoribonuclease and an endoribonuclease on model RNA substrates and to be inhibited by the presence of a 3′-terminal CCA sequence. Here, we examined the mode of action of RNase BN on bacteriophage and bacterial tRNA precursors, particularly in light of a recent report suggesting that RNase BN removes CCA sequences (Takaku, H., and Nashimoto, M. (2008) Genes Cells 13, 1087–1097). We show that purified RNase BN can process both CCA-less and CCA-containing tRNA precursors. On CCA-less precursors, RNase BN cleaved endonucleolytically after the discriminator nucleotide to allow subsequent CCA addition. On CCA-containing precursors, RNase BN acted as either an exoribonuclease or endoribonuclease depending on the nature of the added divalent cation. Addition of Co2+ resulted in higher activity and predominantly exoribonucleolytic activity, whereas in the presence of Mg2+, RNase BN was primarily an endoribonuclease. In no case was any evidence obtained for removal of the CCA sequence. Certain tRNA precursors were extremely poor substrates under any conditions tested. These findings provide important information on the ability of RNase BN to process tRNA precursors and help explain the known physiological properties of this enzyme. In addition, they call into question the removal of CCA sequences by RNase BN.  相似文献   

10.
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn2+ applied to the nickel column at 23 °C. The intensity of the binding of the enzyme to the Ni2+ resin was directly proportional to the concentration of Mn2+. Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni2+, allowing the following to occur: (1) entrance of Mn2+ and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 °C; and (3) an increase in the affinity of the enzyme to Ni2+ after the Mn2+ activation step. The conformational alterations can be summarized as follows: the interaction with the Ni2+ simulates thermal heating in the artificial activation by opening a channel for Mn2+ to enter.  相似文献   

11.
Characterization of the role of ribonucleases in Salmonella small RNA decay   总被引:3,自引:0,他引:3  
In pathogenic bacteria, a large number of sRNAs coordinate adaptation to stress and expression of virulence genes. To better understand the turnover of regulatory sRNAs in the model pathogen, Salmonella typhimurium, we have constructed mutants for several ribonucleases (RNase E, RNase G, RNase III, PNPase) and Poly(A) Polymerase I. The expression profiles of four sRNAs conserved among many enterobacteria, CsrB, CsrC, MicA and SraL, were analysed and the processing and stability of these sRNAs was studied in the constructed strains. The degradosome was a common feature involved in the turnover of these four sRNAs. PAPI-mediated polyadenylation was the major factor governing SraL degradation. RNase III was revealed to strongly affect MicA decay. PNPase was shown to be important in the decay of these four sRNAs. The stability of CsrB and CsrC seemed to be independent of the RNA chaperone, Hfq, whereas the decay of SraL and MicA was Hfq-dependent. Taken together, the results of this study provide initial insight into the mechanisms of sRNA decay in Salmonella, and indicate specific contributions of the RNA decay machinery components to the turnover of individual sRNAs.  相似文献   

12.
Wang P  Jin M  Su R  Song P  Wang M  Zhu G 《Biochimie》2011,93(9):1470-1475
Streptococcus suis, a Gram-positive coccus, is an emerging zoonotic pathogen for both humans and pigs, but little is known about the properties of its metabolic enzymes. Isocitrate dehydrogenase (IDH) is a key regulatory enzyme in the citric acid cycle that catalyzes the oxidative decarboxylation of isocitrate yielding α-ketoglutarate and NAD(P)H. Here, we report the overexpression and enzymatic characterization of IDH from S. suis Serotype 2 Chinese highly virulent strain 05ZYH33 (SsIDH). The molecular weight of SsIDH was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. Additionally, SsIDH was divalent cation-dependent and Mg2+ was found to be the most effective cation. The optimal pH of SsIDH was 7.0 (Mn2+) and 8.5 (Mg2+), and the maximum activity was around 30 °C (Mn2+) and 50 °C (Mg2+), respectively. Heat inactivation studies showed that SsIDH retained 50% activity after 20 min of incubation at 49 °C. Sequence comparison revealed that SsIDH had a significantly homologous identity to bacterial homodimeric IDHs. The recombinant SsIDH displayed a 117-fold (kcat/Km) preference for NAD+ over NADP+ with Mg2+, and a 80-fold greater specificity for NAD+ than NADP+ with Mn2+. Therefore, SsIDH has remarkably high coenzyme preference toward NAD+. This current work is expected to shed light on the functions of metabolic enzymes in S. suis and provide useful information for SsIDH to be considered as a possible candidate for serological diagnostics and detection of S. suis infection.  相似文献   

13.
Eighty-five strains of bacteria were screened for selection of microorganisms suitable for industrial production of polynucleotides. Among these bacteria, Achromobacter sp. KR 170-4 (ATCC 21942) was found to be rich in polynucleotide Phosphorylase (PNPase) in its “salt-shockate” as compared with the other strains tested. PNPase was purified about 50-fold from the “salt-shockate” of Achromobacter sp. KR 170-4, and properties of the enzyme were elucidated. Optimal pH for reaction was 10.1. Stable pH range at 37°C was between pH 6.5 and 10.5. Optimal temperatures were 46°C for polymerization of ADP or IDP, and 43°C for CDP or UDP. The enzyme was stable below 55°C at pH 9.2. The enzyme required Mn2+ rather than Mg2+ unlike the other PNPases reported. Optimal concentration of Mn2+ was 6 mM.  相似文献   

14.
15.
During C. elegans apoptosis, the dicer ribonuclease (DCR-1) is cleaved by the cell death protease CED-3 to generate a truncated DCR-1 (tDCR-1) with one and a half ribonuclease III (RNase III) domains, converting it into a deoxyribonuclease (DNase) that initiates apoptotic chromosome fragmentation. We performed biochemical and functional analyses to understand this unexpected RNase to DNase conversion. In full-length DCR-1, tDCR-1 DNase activity is suppressed by its N-terminal DCR-1 sequence. However, not all the sequence elements in the N-terminal DCR-1 are required for this suppression. Our deletion analysis reveals that a 20-residue α-helix sequence in DCR-1 appears to define a critical break point for the sequence required for suppressing tDCR-1 DNase activity through a structure-dependent mechanism. Removal of the N-terminal DCR-1 sequence from tDCR-1 activates a DNA-binding activity that also requires the one half RNase IIIa domain, and enables tDCR-1 to process DNA. Consistently, structural modeling of DCR-1 and tDCR-1 suggests that cleavage of DCR-1 by CED-3 may cause a conformational change that allows tDCR-1 to bind and process DNA, and may remove steric hindrance that blocks DNA access to tDCR-1. Moreover, a new DNase can be engineered using different RNase III domains, including the one from bacterial RNase III. Our results indicate that very distantly related RNase III enzymes have the potential to cleave DNA when processed proteolytically or paired with an appropriate partner that facilitates binding to DNA. We suggest the possibility that this phenomenon may be extrapolated to other ribonucleases.  相似文献   

16.
17.
To understand the lignocellulose degradation activity of the Clostridium josui cellulosome, a carbohydrate-binding module of the scaffoldin CjCBM3 was characterized. CjCBM3 shows binding to crystalline cellulose, non-crystalline cellulose and soluble polysaccharides. The binding isotherm of CjCBM3 to acid-swollen cellulose is best fitted by the Langmuir two-site model, suggesting that there are two CjCBM3 binding sites on acid-swollen cellulose with different affinities. The second site shows lower affinity and larger binding capacity, suggesting that the cellulosome is directly targeted to the cellulose surface with high affinity, where larger amounts of the cellulosome bind to cellulose with low affinity.  相似文献   

18.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   

19.
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37°C to 15°C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3′-to-5′ exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3′-to-5′ exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3′-to-5′ processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Δpnp cells has consequences, such as accumulation of ribosomal subunits in the Δpnp cells, which may play a role in the cold sensitivity of this strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号