首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species‐specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree‐based maximum‐likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida.  相似文献   

2.
Inferring the evolutionary and ecological processes that have shaped contemporary species distributions using the geographic distribution of gene lineages is the principal goal of phylogeographic research. Researchers in the field have recognized that inferences made from a single gene, often mitochondrial, can be informative regarding the pattern of diversification but lack conclusive information regarding the evolutionary mechanisms that led to the observed patterns. Here, we use a multilocus (20 loci) data set to explore the evolutionary history of the White‐breasted Nuthatch (Sitta carolinensis). A previous single‐locus study found S. carolinensis is comprised of four reciprocally monophyletic clades geographically restricted to the pine and oak forests of: (i) eastern North America, (ii) southern Rocky Mountain and Mexican Mountain ranges, (iii) Eastern Sierra Nevada and Northern Rocky Mountains and (iv) Pacific slope of North America. The diversification of the clades was attributed to the fragmentation of North American pine and oak woodlands in the Pliocene with subsequent divergences owing to the Pleistocene glacial cycles. Principal component, clustering and species tree analyses of the multilocus data resolved the same four groups or lineages found in the single‐locus study. Coalescent analyses and hypothesis testing of nested isolation and migration models indicate that isolation and not gene flow has been the major evolutionary mechanism responsible for shaping genetic variation, and all the divergence events within S. carolinensis have occurred in response to the Pleistocene glacial cycles.  相似文献   

3.
Combining morphological, ecological and genetic analyses, we compared patterns of diversification within and among populations of the southern Siberian whitefish species Coregonus lavaretus pidschian (Gmelin) to illuminate their evolutionary history. Using sequencing data from 1,930 bp of NADH dehydrogenase subunit 1 (ND1) mitochondrial DNA regions, we documented phylogeographic relationships among populations and developed a phylogeny of mtDNA haplotypes. We found significant differences in the perforated lateral-line scale numbers within and between some populations. Clear differences in the number of gill rakers on the first branchial arch were only exhibited between populations of C. l. pidschian and Coregonus lavaretus pravdinellus Dulkeit. Concordance between different morphological groups based on two meristic traits and mtDNA patterns was also tested.  相似文献   

4.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

5.
Patagonia was shaped by a complex geological history, including the Miocene uplift of the Andes, followed by volcanism, marine introgressions, and extreme climatic oscillations during Pliocene–Pleistocene glaciation–deglaciation cycles. The distributional patterns and phylogenetic relationships of southern patagonian animals and plants were affected in different ways, and those imprints are reflected in the seven phylogeographic breaks and eight refugia that have been previously proposed. In this study, we estimated time‐calibrated phylogenetic/phylogeographic patterns in lizards of the Liolaemus lineomaculatus group and relate them to historical Miocene‐to‐Pleistocene events of Patagonia and the previously proposed phylogeographic patterns. Individuals from 51 localities were sequenced for the mitochondrial marker (cyt‐b) and a subsample of individuals from each mitochondrial lineage was sequenced for one nuclear (LDA12D) and one slow evolving mitochondrial gene (12S). Our analyses revealed strong phylogeographic structure among lineages and, in most cases, no signal of demographic changes through time. The lineomaculatus group is composed of three strongly supported clades (lineomaculatus, hatcheri and kolengh + silvanae), and divergence estimates suggested their origins associated with the oldest known Patagonian glaciation (7–5 Ma); subsequent diversification within the lineomaculatus clade coincided with the large Pliocene glaciations (~3.5 Ma). The lineomaculatus clade includes nine strongly genetically and geographically structured lineages, five of which are interpreted as candidate species. Our findings suggest that some Liolaemus lineages have persisted in situ, each of them in a different refugium, through several glaciation–deglaciation cycles without demographic fluctuations. We also summarize and update qualitative evidence of some shared phylogeographic breaks and refugia among plants, rodents and lizards.  相似文献   

6.
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well‐supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.  相似文献   

7.
Understanding the genetic bases of biological diversification is a long‐standing goal in evolutionary biology. Here, we investigate whether replicated cases of adaptive divergence involve the same genomic regions in the pea aphid, Acyrthosiphon pisum, a large complex of genetically differentiated biotypes, each specialized on different species of legumes. A previous study identified genomic regions putatively involved in host‐plant adaptation and/or reproductive isolation by performing a hierarchical genome scan in three biotypes. This led to the identification of 11 FST outliers among 390 polymorphic microsatellite markers. In this study, the outlier status of these 11 loci was assessed in eight biotypes specialized on other host plants. Four of the 11 previously identified outliers showed greater genetic differentiation among these additional biotypes than expected under the null hypothesis of neutral evolution (α < 0.01). Whether these hotspots of genomic divergence result from adaptive events, intrinsic barriers or reduced recombination is discussed.  相似文献   

8.
Amidst the rapid advancement in next‐generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes—up to 40 times the size of the human genome—and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time‐consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes.  相似文献   

9.
A growing body of knowledge on the diversity and evolution of intertidal isopods across different regions worldwide has enhanced our understanding on biological diversification at the poorly studied, yet vast, sea–land interface. High genetic divergences among numerous allopatric lineages have been identified within presumed single broadly distributed species. Excirolana mayana is an intertidal isopod that is commonly found in sandy beaches throughout the Gulf of California. Its distribution in the Pacific extends from this basin to Colombia and in the Atlantic from Florida to Venezuela. Despite its broad distribution and ecological importance, its evolutionary history has been largely neglected. Herein, we examined phylogeographic patterns of E. mayana in the Gulf of California and the Caribbean, based on maximum‐likelihood and Bayesian phylogenetic analyses of DNA sequences from four mitochondrial genes (16S rDNA, 12S rDNA, cytochrome oxidase I gene, and cytochrome b gene). We compared the phylogeographic patterns of E. mayana with those of the coastal isopods Ligia and Excirolana braziliensis (Gulf of California and Caribbean) and Tylos (Gulf of California). We found highly divergent lineages in both, the Gulf of California and Caribbean, suggesting the presence of multiple species. We identified two instances of Atlantic–Pacific divergences. Some geographical structuring among the major clades found in the Caribbean is observed. Haplotypes from the Gulf of California form a monophyletic group sister to a lineage found in Venezuela. Phylogeographic patterns of E. mayana in the Gulf of California differ from those observed in Ligia and Tylos in this region. Nonetheless, several clades of E. mayana have similar distributions to clades of these two other isopod taxa. The high levels of cryptic diversity detected in E. mayana also pose challenges for the conservation of this isopod and its fragile environment, the sandy shores.  相似文献   

10.
Many studies have revealed that lineages currently inhabiting formerly glaciated areas were pushed into southern glacial refugia and have expanded into their modern range since the last glacial maximum. There have been few studies that compare the effects of glacial cycles on lineage diversification and historical demography in closely related species with overlapping ranges. In this study we compare phylogeographic structure, historical demography, and approximate lineage age in two closely related and broadly co-occurring venomous snakes in eastern North America, the cottonmouth (Agkistrodon piscivorus) and copperhead (A. contortrix) using sequences from the mtDNA gene cytochrome b. We inferred three geographic lineages of A. contortrix and two of A. piscivorus with no common geographic or temporal pattern of lineage diversification identified for these species. Lineage diversification occurred in the Late Pliocene for A. piscivorus (2.5 mya) and in the Early Pleistocene for A. contortrix (1.5 mya). Demographic estimates revealed population expansion following the last glacial maximum (20,000 years ago) in two lineages of A. contortrix (the Central clade and Eastern clade) and one lineage of A. piscivorus (the Continental clade). The Florida clade of A. piscivorus is the only lineage for which constant population size through time was inferred, possibly due to stable populations persisting in areas unaffected by glacial advances. Our data suggest that unique habitat preferences may have shaped both the phylogeographic and demographic histories of each species.  相似文献   

11.
Species ranges that span different geographic landscapes frequently contain cryptic species‐ or population‐level structure. Identifying these possible diversification factors can often be accomplished under a comparative phylogeographic framework. However, comparisons suffer if previous studies are limited to a particular group or habitat type. In California, a complex landscape has led to several phylogeographic breaks, primarily in terrestrial species. However, two sister taxa of freshwater fish, riffle sculpin (Cottus gulosus) and Pit sculpin (Cottus pitensis), display ranges based on morphological identifications that do not coincide with these breaks. Using a comprehensive sampling and nuclear, mitochondrial and microsatellite markers, we hypothesized that proposed species ranges are erroneous based on potential hybridization/gene flow between species. Results identified a phylogeographic signature consistent with this hypothesis, with breaks at the Coast Range Mountains and Sacramento/San Joaquin River confluence. Coastal locations of C. gulosus represent a unique lineage, and ‘true’ C. gulosus were limited to the San Joaquin basin, both regions under strong anthropogenic influence and potential conservation targets. C. pitensis limits extended historically throughout the Sacramento/Pit River basin but currently are restricted to the Pit River. Interestingly, locations in the Sacramento River contained low levels of ancestral hybridization and gene flow from C. gulosus but now appear to be a distinct population. The remaining population structure was strongly correlated with Sierra Nevada presence (high) or absence (low). This study stresses the importance of testing phylogeographic breaks across multiple taxa/habitats before conservation decisions are made, but also the potential impact of different geographic landscapes on evolutionary diversification.  相似文献   

12.
Introduced species can have a variety of effects on the behavior and ecology of native species. We compared display behavior and habitat use of introduced Anolis sagrei and native Anolis carolinensis lizards across three sites in Southern Louisiana. The chosen sites were similar in that they were all located in urban settings with clumped vegetation. The first site contained only A. sagrei, the second supported sympatric A. sagrei and A. carolinensis populations, and the third site harbored only A. carolinensis. We found that (1) A. carolinensis perched significantly higher when A. sagrei was present, consistent with previous studies, whereas perch height of A. sagrei was not altered by the presence of A. carolinensis; (2) A. carolinensis in single and mixed sites exhibited different proportions of display types, with individuals at the mixed Tulane site performing significantly more C displays than those at the single site; and (3) Anolis sagrei at the Tulane mixed site exhibited less push‐ups than those in the site with A. sagrei alone. These data suggest that the arrival of congeners can affect display behavior of anoles, although such effects are different for the natives and the invaders.  相似文献   

13.
The study of host–parasite coevolution is one of the cornerstones of evolutionary biology. The majority of fish ectoparasites belonging to the genus Dactylogyrus (Monogenea) exhibit a high degree of host specificity. Therefore, it is expected that their evolutionary history is primarily linked with the evolutionary history of their cyprinoid fish hosts and the historical formation of the landmasses. In the present study, we used a cophylogenetic approach to investigate coevolutionary relationships between endemic Cyprinoidea (Cyprinidae and Leuciscidae) from selected regions in southern Europe and their respective Dactylogyrus species. A total of 49 Dactylogyrus species including endemic and non-endemic species were collected from 62 endemic cyprinoid species in the Balkan and Apennine Peninsulas. However, 21 morphologically identified Dactylogyrus species exhibited different genetic variants (ranging from 2 to 28 variants per species) and some of them were recognized as cryptic species on the basis of phylogenetic reconstruction. Phylogenetic analyses revealed several lineages of endemic and non-endemic Dactylogyrus species reflecting some morphological similarities or host affinities. Using distance-based and event-based cophylogenetic methods, we found a significant coevolutionary signal between the phylogenies of parasites and their hosts. In particular, statistically significant links were revealed between Dactylogyrus species of Barbini (Cyprinidae) and their hosts belonging to the genera Aulopyge, Barbus and Luciobarbus. Additionally, a strong coevolutionary link was found between the generalist parasites D. alatus, D. sphyrna, D. vistulae, and their hosts, and between Dactylogyrus species of Pachychilon (Leuciscidae) and their hosts. Cophylogenetic analyses suggest that host switching played an important role in the evolutionary history of Dactylogyrus parasitizing endemic cyprinoids in southern Europe. We propose that the high diversification of phylogenetically related cyprinoid species in the Mediterranean area is a process facilitating the host switching of specific parasites among highly diverse congeneric cyprinoids.  相似文献   

14.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

15.
We investigated the biogeographic history of antelope squirrels, genus Ammospermophilus, which are widely distributed across the deserts and other arid lands of western North America. We combined range‐wide sampling of all currently recognized species of Ammospermophilus with a multilocus data set to infer phylogenetic relationships. We then estimated divergence times within identified clades of Ammospermophilus using fossil‐calibrated and rate‐calibrated molecular clocks. Lastly, we explored generalized distributional changes of Ammospermophilus since the last glacial maximum using species distribution models, and assessed responses to Quaternary climate change by generating demographic parameter estimates for the three wide‐ranging clades of A. leucurus. From our phylogenetic estimates we inferred strong phylogeographic structure within Ammospermophilus and the presence of three well‐supported major clades. Initial patterns of historical divergence were coincident with dynamic alterations in the landscape of western North America, and the formation of regional deserts during the Late Miocene and Pliocene. Species distribution models and demographic parameter estimates revealed patterns of recent population expansion in response to glacial retreat. When combined with evidence from co‐distributed taxa, the historical biogeography of Ammospermophilus provides additional insight into the mechanisms that impacted diversification of arid‐adapted taxa across the arid lands of western North America. We propose species recognition of populations of the southern Baja California peninsula to best represent our current understanding of evolutionary relationships among genetic units of Ammospermophilus. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 949–967.  相似文献   

16.
The Greek endemic isopod species Trachelipus aegaeus is distributed in Aegean islands and the adjacent coastal parts of the Greek mainland. Major palaeogeographic events of the Aegean archipelago, such as the formation of the mid‐Aegean trench and the Messinian Salinity Crisis, have been often employed as major causal factors of evolutionary events and phylogeographic patterns exhibited by several taxa. Herein, we infer phylogenetic relationships among T. aegaeus populations using partial cytochrome oxidase subunit I (COI) and 16S rRNA sequences. Due to the poor preservation of the specimens, we propose a modified DNA extraction protocol, which returned highly positive results in terms of the quality of the total extracted DNA. We implement a calibrated molecular clock and path sampling analysis, using alternative palaeogeographic events and rates of substitution, to evaluate the biogeographic history of the species and to estimate the chronology of diversification events among its populations. Our results are clearly in favour of the scenario of the MAT triggering vicariance among most T. aegaus populations. Moreover, the large intraspecific genetic divergence (0–19% for COI and 0–20.3% for the 16S rRNA) and the overall phylogeographic patterns depicted herein seem not to have been obscured by more recent palaeogeological events. A role of dispersal, probably human‐aided, is assumed for certain ‘deviant’ cases.  相似文献   

17.
Astatotilapia burtoni is a member of the “modern haplochromines,” the most species‐rich lineage within the family of cichlid fishes. Although the species has been in use as research model in various fields of research since almost seven decades, including developmental biology, neurobiology, genetics and genomics, and behavioral biology, little is known about its spatial distribution and phylogeography. Here, we examine the population structure and phylogeographic history of A. burtoni throughout its entire distribution range in the Lake Tanganyika basin. In addition, we include several A. burtoni laboratory strains to trace back their origin from wild populations. To this end, we reconstruct phylogenetic relationships based on sequences of the mitochondrial DNA (mtDNA) control region (d‐loop) as well as thousands of genomewide single nucleotide polymorphisms (SNPs) derived from restriction‐associated DNA sequencing. Our analyses reveal high population structure and deep divergence among several lineages, however, with discordant nuclear and mtDNA phylogenetic inferences. Whereas the SNP‐based phylogenetic hypothesis uncovers an unexpectedly deep split in A. burtoni, separating the populations in the southern part of the Lake Tanganyika basin from those in the northern part, analyses of the mtDNA control region suggest deep divergence between populations from the southwestern shoreline and populations from the northern and southeastern shorelines of Lake Tanganyika. This phylogeographic pattern and mitochondrial haplotype sharing between populations from the very North and the very South of Lake Tanganyika can only partly be explained by introgression linked to lake‐level fluctuations leading to past contact zones between otherwise isolated populations and large‐scale migration events.  相似文献   

18.
Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi, a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri, and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.  相似文献   

19.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

20.
Aim To investigate the impact of climatic oscillations and recognized biogeographic barriers on the evolutionary history of the garden skink (Lampropholis guichenoti), a common and widespread vertebrate in south‐eastern Australia. Location South‐eastern Australia. Methods Sequence data were obtained from the ND4 mitochondrial gene for 123 individuals from 64 populations across the entire distribution of the garden skink. A range of phylogenetic (maximum likelihood, Bayesian) and phylogeographic analyses (genetic diversity, Tajima’s D, ΦST, mismatch distribution) were conducted to examine the evolutionary history and diversification of the garden skink. Results A deep phylogeographic break (c. 14%), estimated to have occurred in the mid–late Miocene, was found between ‘northern’ and ‘southern’ populations across the Hunter Valley in northern New South Wales. Divergences among the geographically structured clades within the ‘northern’ (five clades) and ‘southern’ (seven clades) lineages occurred during the Pliocene, with the location of the major breaks corresponding to the recognized biogeographic barriers in south‐eastern Australia. Main conclusions Climatic fluctuations and the presence of several elevational and habitat barriers in south‐eastern Australia appear to be responsible for the diversification of the garden skink over the last 10 Myr. Further molecular and morphological work will be required to determine whether the two genetic lineages represent distinct species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号