共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Jean D. Deupree James A. Weaver David A. Downs 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,714(3):471-478
Studies on the mechanism of catecholamine transport into chromaffin granules is complicated by the release of endogenous catecholamines. To overcome this problem chromaffin granule ghosts have been prepared by many investigators by osmotic lysis of the granules which results in a loss of over 90% of the endogenous catecholamine. However, in the studies reported here, the resulting ghosts still contained 36 ± 3.9 nmol epinephrine/mg of protein if they were lysed by passage through a Sephadex G-50 column preequilibrated with hypoosmtic media. This residual catecholamine was foun the slowly diffuse out of the ghosts in a temperature-dependent process at a rate sufficient to interfere with kinetic analysis of catecholamine transport. Attempts to remove the endogenous catecholamine from the ghosts indicated that most of it could not be removed by further osmotic shock or freeze-thaw treatments, but that over 85% of it was released from the granules by incubating them at 30°C for 90 min or by dialysis with a 35 and 86% loss of rate of catecholamine transport into the ghosts, respectively. If the endogenous catecholamine was removed from chromaffin granule ghosts by preincubating them for 90 min at 30°C, these resulting ghosts transported catecholamine with a linear Lineweaver-Burk plot indicating a Km of 12±2 μM. In addition, the resulting ghosts did not leak catecholamines over a 10 min period at 30°C, and the transport of catecholamines was blocked by reserpine and enhanced with increasing pH from 6.0 to 8.5. 相似文献
4.
Peptides in the adrenal medulla chromaffin granule 总被引:1,自引:0,他引:1
5.
Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla 总被引:3,自引:0,他引:3
M Levine K Morita E Heldman H B Pollard 《The Journal of biological chemistry》1985,260(29):15598-15603
The effect of ascorbic acid on the conversion of dopamine to norepinephrine was investigated in isolated chromaffin granules from bovine adrenal medulla. Ascorbic acid was shown to double the rate of [3H]norepinephrine formation from [3H]dopamine, despite no demonstrable accumulation of ascorbic acid into chromaffin granules. The enhancement of norepinephrine biosynthesis by ascorbic acid was dependent on the external concentrations of dopamine and ascorbate. The apparent Km of the dopamine beta-hydroxylation system for external dopamine was approximately 20 microM in the presence or absence of ascorbic acid. However, the apparent maximum velocity of norepinephrine formation was nearly doubled in the presence of ascorbic acid. By contrast, the apparent Km and Vmax of dopamine uptake into chromaffin granules were not affected by ascorbic acid. Norepinephrine formation was increased by ascorbic acid when the concentration of ascorbate was 200 microM or higher; a concentration of 2 mM appeared to induce the maximal effect under the experimental conditions used here. The effect of ascorbic acid on conversion of dopamine to norepinephrine required Mg-ATP-dependent dopamine uptake into chromaffin granules. In contrast to ascorbic acid, other reducing agents such as NADH, glutathione, and homocysteine were unable to enhance norepinephrine biosynthesis. These data suggest that ascorbic acid provides reducing equivalents for hydroxylation of dopamine despite the lack of ascorbate accumulation into chromaffin granules. These findings imply the functional existence of an electron carrier system in the chromaffin granule which transfers electrons from external ascorbic acid for subsequent intragranular norepinephrine biosynthesis. 相似文献
6.
1. Insulin receptors were investigated in isolated chromaffin cells from bovine adrenal medulla. 2. The cells were incubated with [125I]insulin in HEPES buffer, pH 7.8 at 15 degrees C for 180 min to obtain steady state binding. Specific binding was linearly related to the number of cells in the range 0.5-10 x 10(6) cells/ml. Insulin and proinsulin caused half maximal displacement of specifically bound tracer in concentrations of 0.18 and 2.46 nM, respectively. 3. Computer analysis of the binding data gave a linear Scatchard plot, consistent with a single class of non-interacting receptors with an affinity constant of 5.6 nM-1, the total number of receptors per cell being 1700. 4. The apparent MW of the insulin binding subunit of the receptor was 135,000, determined by affinity crosslinking and SDS gel electrophoresis under reducing conditions. 相似文献
7.
Phospholipase C and diacylglycerol lipase activities associated with plasma membranes of chromaffin cells isolated from bovine adrenal medulla 总被引:3,自引:0,他引:3
The plasma membranes of bovine adrenal chromaffin cells were isolated and the activities of enzymes involved in arachidonic acid liberation were investigated. Only a minute activity of phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) could be detected using externally added phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as substrate. When membranes were treated with exogenous phospholipase C (orthophosphoric acid diester phosphohydrolase, EC 3.1.4.1) there was a liberation of free fatty acids from the sn-2 position of PC. The enzyme responsible for this effect could be demonstrated to be a diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) localized in the plasma membrane. Using phosphatidylinositol (PI) as a substrate, it was found that an endogenous phospholipase C exists which co-purifies with the membrane preparation. The produced diacylglycerol is subsequently hydrolyzed by diacylglycerol lipase liberating arachidonic acid. The two enzymes, phospholipase C and diacylglycerol lipase were characterized. Phospholipase C was found to be calcium dependent and PI specific, showing an activity of 60 pmol/micrograms protein per h (1.2 mM Ca2+), whereas the diacylglycerol lipase was calcium independent hydrolyzing diacylglycerol at a rate of 7.2 pmol/micrograms protein per h. The lipase but not the phospholipase C was inhibited 50% by 1.7 mM para-bromophenacylbromide. 相似文献
8.
It was reported that subcellular fractionation of bovine adrenal medulla results in the separation of distinct, non-calcium-dependent phospholipases A2--one associated with chromaffin granule ghosts, another with lysosomes. The basis of this distinction is pH optimum: in routine assays utilizing neat liposomal substrates, the chromaffin granule ghost-associated enzyme is alkaline-active whereas the lysosomal enzyme is acid-active (Husebye, E.S. and Flatmark, T. (1987) Biochim. Biophys. Acta 920, 120-130). We now report that biomembranes after liposomal substrates and/or lysosomal phospholipase A2 such that the enzyme now hydrolyzes them (at low cation concentration) with an alkaline pH optimum. In a lysosomal membrane fraction, phospholipase A2 activity at pH 7.5 relative to activity at pH 5.0 increases as increasing amounts of lysosomal membranes are assayed. The pH optimum of chromaffin granule ghost-associated phospholipase A2 toward liposomal substrates is likewise biomembrane-dependent and, when assayed carefully, is indistinguishable on the basis of optimal pH from the lysosomal enzyme. Although chromaffin granule ghost-associated phospholipase A2 is most likely a lysosomal contaminant, its broad, biomembrane-modulated pH range may still allow it to participate in catecholamine secretion. More importantly, however, sensitivity of adrenal medullary lysosomal phospholipase A2 to biomembranes broadens its potential physiologic pH range and may also play a role in the regulation of this potentially deleterious activity. 相似文献
9.
Synexin induces chromaffin granule ghosts to fuse one to another, a process which is followed continuously and quantitatively by monitoring the mixing of the intragranular aqueous compartments. A freeze-thaw technique was used for preparing chromaffin granule ghosts loaded with a self-quenching concentration of the fluorescent, high molecular weight probe FITC-Dextran. When the loaded ghosts were mixed with empty ghosts in the presence of synexin, the two compartments fused, resulting in the dilution of the probe with the concomitant increase in fluorescence. So as to suppress possible leakage signals, anti-fluorescein antibodies which quench probe fluorescence were present in the reaction media. Synexin-mediated fusion of freeze-thaw (F/Th) ghosts and binding of 125I-synexin to these membranes were found to be dependent on Ca2+ concentration, but only in a partial manner. However, these two synexin-mediated properties were demonstrably sensitive to [H+] in the medium. A detailed pH profile of fusion revealed an apparent midpoint of activation at approx. pH 5.2, with asymptotic values at pH 4 (maximum) and pH 7.2 (minimum). In our attempt to determine whether the pH effect was on the synexin or on the membranes, we found that fusion was blocked only by treatment of the membranes with the membrane-impermeant carboxyl group modifier 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide. These data suggest that membrane fusion evoked by synexin seems to be promoted by rendering the F/Th membranes relatively less negatively charged while the synexin becomes more positively charged. The fusion process was entirely dependent upon synexin concentration; the k1/2 under optimal conditions of pCa and pH was 85 nM. Similar to what has been previously found with intact granules, an anti-synexin polyclonal antibody partially (48%) blocked fusion, as did pretreatment of the chromaffin granules ghosts with trypsin (30%). We conclude that the coincident pCa and pH sensitivity of synexin-mediated binding to chromaffin granule membranes and their subsequent fusion might be associated with physiological changes in the concentration of both cations in the cytoplasm of secreting chromaffin cells. 相似文献
10.
Tyrosine hydroxylase purified to apparent homogeneity from the soluble fraction of bovine adrenal medulla had an apparent Mr of about 280,000 by Bio-Gel A-1.5m chromatography, and gave a single band with a Mr of 60,000 by sodium dodesyl sulfate polyacrylamide gel electrophoresis. The enzyme is considered to be composed of four identical subunits. Isoelectric point of purified enzyme was pH 6.0. The amino acid composition of the enzyme was characterized by fairly high contents of glutamic acid and alanine residues. The N-terminal amino acid was determined to be glutamic acid. 相似文献
11.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases. 相似文献
12.
Demonstration of the ascorbate dependence of membrane-bound dopamine beta-monooxygenase in adrenal chromaffin granule ghosts 总被引:1,自引:0,他引:1
H H Herman K Wimalasena L C Fowler C A Beard S W May 《The Journal of biological chemistry》1988,263(2):666-672
Chromaffin granule ghosts from bovine adrenal medullae have been used to examine the ability of membrane-bound dopamine beta-monooxygenase to interact directly with intravesicular ascorbate and to investigate vectorial electron transfer from external ascorbate across the ghost membrane. Ghosts prepared by a modification of published procedures were shown to be fully active in both dopamine uptake and norepinephrine production. Dopamine uptake is dependent on the presence of a magnesium and ATP ionic complex, is abolished by reserpine, and reaches a steady-state level in the presence of dopamine beta-monooxygenase, ascorbate, catalase, and fumarate. Omission of ascorbate either inside or outside the ghosts greatly enhances dopamine accumulation, which reaches levels of approximately 30 nmol/mg under these conditions. Correspondingly, in the presence of all components, norepinephrine production reached approximately 100 nmol/mg in 30 min of incubation. Norepinephrine production was strictly magnesium-ATP-dependent, inhibited by either reserpine or dopamine beta-monooxygenase inactivation, and was markedly reduced when ascorbate was omitted from either inside or outside the ghosts. In the presence of limiting amounts of internal ascorbate, rapid norepinephrine production occurred which corresponded to the amount of initial ascorbate present, followed by a much slower endogenous norepinephrine production observable after complete depletion of internal ascorbate. The endogenous rate of norepinephrine production likely represents epinephrine-supported dopamine beta-monooxygenase turnover. Taken together, the data demonstrate that facile norepinephrine production by membrane-bound dopamine beta-monooxygenase occurs only when internal ascorbate is present, terminates upon depletion of internal ascorbate, and can only be sustained at a significant rate when reducing equivalents from external ascorbate are available. 相似文献
13.
The NADH:(acceptor) oxidoreductase from membranes of bovine adrenal medulla chromaffin granules has been purified by column chromatography. After solubilization of the membranes with emulphogen, a nonionic detergent, the enzyme was purified by dye-ligand chromatography and gel filtration. The oxidoreductase appeared essentially homogeneous on two gel electrophoretic systems. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the enzyme revealed a dimeric structure with a combined molecular weight of about 55,000. The enzyme eluted as a detergent-lipid-protein aggregate with a Stoke's radius of 43 Å on gel filtration columns in the presence of emulphogen. The amino acid composition of the oxidoreductase was found to be distinct from that of similar enzymes from other organelles. Topographical experiments indicated that the enzyme is a transmembrane protein. 相似文献
14.
A unique soluble lipoprotein has been isolated from aqueous lysates of bovine adrenal medulla chromaffin granules by DEAE-cellulose chromatography and gel filtration. Chloroform/methanol extracts of this complex contain sphingomyelin, lecithin, and cholesterol. Gel filtration in aqueous media indicate an approximate molecular weight of 900,000 for the complex. Incubation with sodium dodecyl sulfate causes dissociation to a low molecular weight polypeptide; prolonged treatment with guanidine HCl does not promote dissociation at all. Amino acid analysis revealed a high content of hydrophobic amino acids. Analysis of the tryptic fingerprint indicates that a single type of polypeptide chain is present. The complex appears to contain approximately five copies of polypeptide per aggregate. 相似文献
15.
16.
Tetrabenazine (TBZ) and reserpine are two inhibitors of the catecholamine uptake system of the chromaffin granule membrane. They are structural analogs of the substrates dopamine and serotonin and they inhibit the monoamine transporter, which catalyzes a H+/neutral amine antiport. [3H]Dihydrotetrabenazine ([3H]TBZOH) is bound by chromaffin granule membranes on one class of site (T sites, KD = 3 nM); [3H]reserpine is bound on T sites and a second class of site (R1 sites, KD = 0.7 nM). The two sites are involved in monoamine translocation. The substrates displace the ligands with different efficiency: noradrenaline (Km = 10 microM) displaces reserpine efficiently (EC50 = 30 microM), but TBZOH poorly (EC50 = 2000 microM); m-iodobenzylguanidine, which has recently been shown to be a substrate of the monoamine uptake system (Km = 5 microM), displaces TBZOH efficiently (EC50 = 25 microM), but reserpine inefficiently (EC50 = 300 microM). Since both substrates are translocated by the same transporter, this result confirms the existence of two sites with different properties. T sites are characterized by a linear relationship between the reciprocal of the dissociation constants of various drugs displacing [3H]TBZOH and their partition coefficient in octanol/H2O mixtures. This relationship, which indicates a hydrophobic environment of T sites, does not exist for R1 sites. T sites have been identified by covalent labeling with a derivative of TBZ coupled to an arylazido group. The labeled sites are borne by a 65,000 dalton protein. The kinetics of reserpine binding are accelerated in the presence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Partially purified bovine adrenal medullary myosin light-chain kinase (MLCK) possesses a Stoke's radius of 79 A and a sedimentation coefficient of 3.95 +/- 0.45 S, yielding a native molecular weight of 150,000 +/- 17,000 g/mol and a frictional ratio of 2.24. It catalyzes the phosphorylation of the isolated light chain of skeletal muscle myosin and the light chain of intact adrenal medullary myosin, but not phosphorylase b or histone. The activation of MLCK by calmodulin is specific and dose dependent, yielding a K0.5 value of 9.0 nM; the dose response curve with respect to free Ca2+ is biphasic, exhibiting a stimulatory phase at low free Ca2+ concentrations (K0.5 = 0.17 microM) and an inhibitory phase at higher free Ca2+ concentrations (400-3000 microM). Michaelis-Menten kinetics are observed for ATP, yielding a Km for ATP of 25 microM and a Vmax of 23.2 nmol/min/mg. However, positive cooperative kinetics are observed for the skeletal muscle myosin light chain, yielding a Hill coefficient of 3.57, a K0.5 for light chain of 27 microM and a Vmax of 16.6 nmol/min/mg. A stoichiometry of phosphorylation of approximately 1 mol of phosphate/mol of skeletal muscle myosin light chain was observed. Therefore, adrenal medullary MLCK is similar in most, but not all, of its physical and kinetics properties to MLCKs isolated from other sources and may serve to regulate actin-myosin contractile activity in the adrenal medulla. 相似文献
18.
The structural features of the soluble dopamine beta-hydroxylase from chromaffin granules of bovine adrenal medulla were studied using negative staining and platinum shadowing electron microscopic methods. The enzyme was shown to be highly asymmetric as suggested in earlier hydrodynamic studies. The tetramer of the enzyme appeared as four subunits arranged in the shape of a planar rose with an estimated width of 15 nm. A minimum thickness of 3.0 nm for the enzyme monomer was calculated from the shadow length of unidirectionally shadowed molecules. A model composed of four oblate ellipsoid monomers in a tetrameric rose arrangement is proposed for the shape of the dopamine beta-hydroxylase molecule. Two monomers associate edge to edge to form an in-plane dimer and two dimers associate side-by-side with their respective long axes at a slight angle to form a tetramer. Theoretical calculations based on the model are consistent with previous hydrodynamic studies. 相似文献
19.
Peptidyl alpha-amidation activity in bovine adrenal medulla has been localized in chromaffin granules by density gradient centrifugation. The activity was found to be both soluble and membrane-associated. Both enzymatic activities were stimulated by the addition of Cu2+ and ascorbate. The pH maximum for alpha-amidation in the chromaffin granules in pH 8.0-8.5. By gel filtration, the soluble enzyme activity appeared as a protein of approx. 40 kDa. It is suggested that this enzyme is involved in the carboxyl-terminal amidation of metorphamide, amidorphin and neuropeptide Y. 相似文献
20.
Chromaffin granules essentially free of contamination from mitochondria, lysosomes and fragments of endoplasmic reticulum have been isolated in a large scale from bovine adrenal medulla. The homogeneity was judged by electron microscopy and assays of various ‘marker’ enzymes. 相似文献