首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV), a human gammaherpesvirus, establishes a lifelong latent infection in B lymphocytes and epithelial cells following primary infection. Several lines of evidence suggest that exosomes derived from EBV-infected cells are internalized and transfer viral factors, including EBV-encoded latent membrane protein and microRNAs, to the recipient cells. However, the detailed mechanism by which exosomes are internalized and their physiological impact on the recipient cells are still poorly understood. In this study, we visualized the internalization of fluorescently labeled exosomes derived from EBV-uninfected and EBV-infected B cells of type I and type III latency into EBV-negative epithelial cells. In this way, we demonstrated that exosomes derived from all three cell types were internalized into the target cells in a similar fashion. Internalization of exosomes was significantly suppressed by treatment with an inhibitor of dynamin and also by the knockdown of caveolin-1. Labeled exosomes were colocalized with caveolae and subsequently trafficked through endocytic pathways. Moreover, we observed that exosomes derived from type III latency cells upregulated proliferation and expression of intercellular adhesion molecule 1 (ICAM-1) in the recipient cells more significantly than did those derived from EBV-negative and type I latency cells. We also identified the EBV latent membrane protein 1 (LMP1) gene as responsible for induction of ICAM-1 expression. Taken together, our data indicate that exosomes released from EBV-infected B cells are internalized via caveola-dependent endocytosis, which, in turn, contributes to phenotypic changes in the recipient cells through transferring one or more viral factors.  相似文献   

2.
3.
Moser JJ  Fritzler MJ 《PloS one》2010,5(10):e13445

Background

GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.

Methodology/Principal Findings

RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.

Conclusions/Significance

The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.  相似文献   

4.

Background

Identifying the endogenous RNA induced silencing complex(RISC)-associated RNAs is essential for understanding the cellular regulatory networks by miRNAs. Recently, isolation of RISC-associated mRNAs using antibody was reported, but their method needs a large amount of initial materials. We tried to improve the protocol and constructed an efficient and convenient system for analyzing miRNA and mRNA contents in RISC.

Findings

With our protocol, it is possible to clone both miRNAs and mRNAs from the endogenous RISC-associated RNAs immunoprecipitated from less than 107 cells, and we show the ability of our system to isolate the particular target mRNAs for a specific miRNA from the RISC-associated mRNAs using well-characterized miR-122 as an example. After introduction of miR-122 into HepG2 cells, we found several cDNA clones that have miR-122 target sequences. Four of these clones that were concentrated in RISC but decreased in total RNA fraction are expected to be miR-122 target candidates. Interestingly, we found substantial amounts of Alu-related sequences, including both free Alu RNA and Alu-embedded mRNA, which might be one of the general targets for miRNA, in the cDNA clones from the RISC-associated mRNAs.

Conclusion

Our method thus enables us to examine not only dynamic changes in miRNA and mRNA contents in RISC but also the relationship of miRNA and target mRNA. We believe that our method can contribute to understanding cellular regulatory networks by miRNAs.  相似文献   

5.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   

6.
《Autophagy》2013,9(12):2173-2174
Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental unit and the maternal blood, and is therefore a critical physical and immunological barrier to restrict the spread of pathogens into the fetal microenvironment. Recently, we found that primary human placental trophoblast (PHT) cells are highly resistant to infection by diverse viruses. In this study, we also found that conditioned medium from PHT cell cultures transferred viral resistance to nonplacental recipient cells, suggesting that a component secreted by trophoblasts and present within the conditioned medium is responsible for this antiviral effect. We found that specific miRNAs from a unique primate- and placental-specific locus—the C19MC (chromosome 19 miRNA cluster)—are packaged within exosomes produced by PHT cells and confer viral resistance in nonplacental recipient cells. In addition to conveying viral resistance, we found that PHT-derived exosomes and select miRNA members of the C19MC family strongly induce autophagy, which is involved in recipient cell viral resistance. Our findings establish an exciting and novel mechanism by which placental trophoblasts exploit exosome-dependent transfer of placental-specific miRNAs to influence autophagic induction and antiviral immunity at the maternal–fetal interface.  相似文献   

7.
Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 104–106 copies/ml TAR RNA in exosomes derived from infected culture supernatants and 103 copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.  相似文献   

8.
9.
10.
Exosome is an extracellular vesicle released from multivesicular endosomes and contains micro (mi) RNAs and functional proteins derived from the donor cells. Exosomal miRNAs act as an effector during communication with appropriate recipient cells, this can aid in the utilization of the exosomes in a drug delivery system for various disorders including malignancies. Differences in the miRNA distribution pattern between exosomes and donor cells indicate the active translocation of miRNAs into the exosome cargos in a miRNA sequence-dependent manner, although the molecular mechanism is little known. In this study, we statistically analyzed the miRNA microarray data and revealed that the guanine (G)-rich sequence is a dominant feature of exosome-dominant miRNAs, across the mammalian species-specificity and the cell types. Our results provide important information regarding the potential use of exosome cargos to develop miRNA-based drugs for the treatment of human diseases.  相似文献   

11.
12.
13.
The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen, eradication of established tumors in mice, inhibition and activation of natural killer cells, promotion of differentiation into T regulatory cells, stimulation of T cell proliferation and induction of T cell apoptosis. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.  相似文献   

14.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

15.
Small RNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-associated interfering RNAs (piRNAs), are powerful gene expression regulators. This RNA-mediated regulation results in sequence-specific inhibition of gene expression by translational repression and/or mRNA degradation. siRNAs and miRNAs are generated by RNase III enzymes and subsequently loaded into Argonaute protein, a key component of the RNA induced silencing complex (RISC), to form the core of the RNA silencing machinery. RNA silencing acts as an ancient cell defense system against molecular parasites, such as transgenes, viruses and transposons. RNA silencing also plays an important role in the control of development. In plants, RNA silencing serves as a potent antiviral defense system. In response, many viruses have developed strategies to suppress RNA silencing. The striking sequence diversity among viral suppressors suggests that different viral suppressors could target different components of the RNA silencing machinery at different steps in different suppressing modes. Significant progresses have been made in this field for the past 5 years on the basis of structural information derived from RNase III family proteins, Dicer fragments and homologs, Argonaute homologs and viral suppressors. In this paper, we will review the current progress on the understanding of molecular mechanisms of RNA silencing; highlight the structural principles determining the protein–RNA recognition events along the RNA silencing pathways and the suppression mechanisms displayed by viral suppressors.  相似文献   

16.
17.
MicroRNAs and cell differentiation in mammalian development   总被引:8,自引:0,他引:8  
MicroRNAs (miRNAs) are a group of recently discovered small RNAs produced by the cell using a unique process, involving RNA polymerase II, Microprocessor protein complex, and the RNAase III/Dicer endonuclease complex, and subsequently sequestered in an miRNA ribonucleoprotein complex. The biological functions of miRNAs depend on their ability to silence gene expression, primarily via degradation of the target mRNA and/or translational suppression, mediated by the RNA-induced silencing complex (RISC). First discovered in Caenorhabditis elegans (lin-4), miRNAs have now been identified in a wide array of organisms, including plants, zebrafish, Drosophila, and mammals. The expression of miRNAs in multicellular organisms exhibits spatiotemporal, and tissue- and cell-specificity, suggesting their involvement in tissue morphogenesis and cell differentiation. More than 200 miRNAs have been identified or predicted in mammalian cells. Recent studies have demonstrated the importance of miRNAs in embryonic stem cell differentiation, limb development, adipogenesis, myogenesis, angiogenesis and hematopoiesis, neurogenesis, and epithelial morphogenesis. Overexpression (gain-of-function) and inactivation (loss-of-function) are currently the primary approaches to studying miRNA functions. Another family of small RNAs related to miRNAs is the small interfering RNAs (siRNAs), generated by Dicer from long double-stranded RNAs (dsRNAs), and produced from an induced transgene, a viral intruder, or a rogue genetic element. siRNAs silence genes via either mRNA degradation, using the RISC, or DNA methylation. siRNAs are actively being applied in basic, functional genetic studies, particularly in the generation of gene knockdown animals, as well as in gene knockdown studies of cultured cells. These studies have provided invaluable information on the specific function(s) of individual genes. siRNA technology also presents exciting potential as a therapeutic approach in disease prevention and treatment, as suggested by a recent study targeting apolipoprotein B (ApoB) in primates. Further elucidation of how miRNAs and other small RNAs interact with known and yet-to-be identified gene regulatory pathways in the cell should provide us with a more in-depth understanding of the mechanisms regulating cellular function and differentiation, and facilitate the application of small RNA technology in disease control and treatment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号