首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
During the millions of years they have coexisted with their hosts, viruses have learned how to manipulate host immune control mechanisms. Viral gene functions provide an overview of many relevant principles in cell biology and immunology. Our knowledge of viral gene functions must be integrated into virus-host interaction networks to understand viral pathogenesis, and could lead to new anti-viral strategies and the ability to exploit viral functions as tools in medicine.  相似文献   

4.
During the millions of years they have coexisted with their hosts, viruses have learned how to manipulate host immune control mechanisms. Viral gene functions provide an overview of many relevant principles in cell biology and immunology. Our knowledge of viral gene functions must be integrated into virus-host interaction networks to understand viral pathogenesis, and could lead to new anti-viral strategies and the ability to exploit viral functions as tools in medicine.  相似文献   

5.
6.
Coexistence of viruses and their hosts imposes an evolutionary pressure on both the virus and the host immune system. On the one hand, the host has developed an immune system able to attack viruses and virally infected cells, whereas on the other hand, viruses have developed an array of immune evasion mechanisms to escape killing by the host's immune system. Generally, the larger the viral genome, the more diverse mechanisms are utilized to extend the time-window for viral replication and spreading of virus particles. In addition, herpesviruses have the capacity to hide from the immune system by their ability to establish latency. The strategies of immune evasion are directed towards three divisions of the immune system, i.e., the humoral immune response, the cellular immune response and immune effector functions. Members of the herpesvirus family are capable of interfering with the host's immune system at almost every level of immune clearance. Antibody recognition of viral epitopes, presentation of viral peptides by major histocompatibility complex (MHC) class I and class II molecules, the recruitment of immune effector cells, complement activation, and apoptosis can all be impaired by herpesviruses. This review aims at summarizing the current knowledge of viral evasion mechanisms.  相似文献   

7.
8.
病毒miRNA与免疫逃逸   总被引:1,自引:0,他引:1  
微小RNA(microRNA,miRNA)是一种非编码的小分子RNA,长度一般在22 nt左右,通过与mRNA 3'UTR的特异性结合介导转录后调控过程。现已鉴定出的miRNA涵盖了从植物到人类的多个物种,并参与了调节生长、免疫、凋亡等多种生命活动。最近发现,DNA病毒感染宿主时也能编码产生miRNA,并在病毒免疫逃逸中扮演着重要角色。病毒感染是一个复杂的过程,病毒需要逃脱免疫系统才能对宿主产生持续性感染,而病毒miRNA能调控宿主和自身基因表达,帮助病毒感染宿主,且因其本身没有免疫原性,而成为病毒逃避免疫应答的重要工具,但其中的分子机制尚不十分清楚。该文就病毒miRNA如何调控病毒自身与宿主基因进行免疫逃逸的近期研究作一综述。  相似文献   

9.
HSV type 1 (HSV-1) has evolved numerous strategies for modifying immune responses that protect against infection. Important targets of HSV-1 infection are the MHC-encoded peptide receptors. Previous studies have shown that a helper T cell response and Ab production play important roles in controlling HSV-1 infection. The reduced capacity of infected B cells to stimulate CD4(+) T cells is beneficial for HSV-1 to evade immune defenses. We investigated the impact of HSV-1 infection on the MHCII processing pathway, which is critical to generate CD4(+) T cell help. HSV-1 infection targets the molecular coplayers of MHC class II processing, HLA-DR (DR), HLA-DM (DM), and invariant chain (Ii). HSV-1 infection strongly reduces expression of Ii, which impairs formation of SDS-resistant DR-peptide complexes. Residual activity of the MHC class II processing pathway is diminished by viral envelope glycoprotein B (gB). Binding of gB to DR competes with binding to Ii. In addition, we found gB associated with DM molecules. Both, gB-associated DR and DM heterodimers are exported from the endoplasmic reticulum, as indicated by carbohydrate maturation. Evaluation of DR, DM, and gB subcellular localization revealed abundant changes in intracellular distribution. DR-gB complexes are localized in subcellular vesicles and restrained from cell surface expression.  相似文献   

10.
11.
Pulmonary infection caused by the opportunistic fungal organism Pneumocystis continues to be a leading AIDS defining illness. The initiation of highly active antiretroviral therapy (HAART) in the HIV-infected population has led to a significant reduction in the incidence of Pneumocystis pneumonia (PCP), although recent trends suggest the incidence has plateaued rather than decreased. Host defense against Pneumocystis involves a delicate, concerted balance between the inflammatory response and immune-mediated clearance. Innate cellular immunity is a cornerstone in this response as it provides the initial recognition event that precipitates an immune response, ultimately leading to clearance of the organism from the host. This review will focus on carbohydrate moieties found in the Pneumocystis cell wall and the immune events that occur following their recognition.  相似文献   

12.
13.
In vitro, Epstein-Barr virus (EBV) will infect any resting B cell, driving it out of the resting state to become an activated proliferating lymphoblast. Paradoxically, EBV persists in vivo in a quiescent state in resting memory B cells that circulate in the peripheral blood. How does the virus get there, and with such specificity for the memory compartment? An explanation comes from the idea that two genes encoded by the virus--LMP1 and LMP2A--allow EBV to exploit the normal pathways of B-cell differentiation so that the EBV-infected B blast can become a resting memory cell.  相似文献   

14.
Cell surface proteins are posttranslationally modified by tightly regulated enzymes of glycosylation. Typical patterns of glycosylation may signal pathological situations to the immune system. Here, carbohydrate receptors on the surface of cells in the immune system are involved in regulation of effector cells. Moreover, some lectins are circulating in the plasma and take part in host defense. The code of carbohydrate modifications is impaired in malignant cells and yet they are not eliminated. In this review, we focus on recent experimental evidence for regulatory functions of lectins and carbohydrate derivatives in the immune system and tumours.  相似文献   

15.
The release of proteins from tumors triggers an immune response in cancer patients. These tumor antigens arise from several mechanisms including tumor-specific alterations in protein expression, mutation, folding, degradation, or intracellular localization. Responses to most tumor antigens are rarely observed in healthy individuals, making the response itself a biomarker that betrays the presence of underlying cancer. Antibody immune responses show promise as clinical biomarkers because antibodies have long half-lives in serum, are easy to measure, and are stable in blood samples. However, our understanding of the specificity and the impact of the immune response in early stages of cancer is limited. The immune response to cancer, whether endogenous or driven by vaccines, involves highly specific T lymphocytes (which target tumor-derived peptides bound to self-MHC proteins) and B lymphocytes (which generate antibodies to tumor-derived proteins). T cell target antigens have been identified either by expression cloning from tumor cDNA libraries, or by prediction based on patterns of antigen expression ("reverse immunology"). B cell targets have been similarly identified using the antibodies in patient sera to screen cDNA libraries derived from tumor cell lines. This review focuses on the application of recent advances in proteomics for the identification of tumor antigens. These advances are opening the door for targeted vaccine development, and for using immune response signatures as biomarkers for cancer diagnosis and monitoring.  相似文献   

16.
CD8(+) T cells are generally considered a key defence against herpesviruses. The murine gamma-herpesvirus-68 encodes two proteins that limit their efficacy. M3 neutralizes chemokines, while K3 downregulates MHC class I glycoproteins. The consequence of this evasion is that CD4(+) T cells are essential to the control of persistent infection.  相似文献   

17.
18.
19.
Herpesviruses stand out for their capacity to establish lifelong infections of immunocompetent hosts, generally without causing overt symptoms. Herpesviruses are equipped with sophisticated immune evasion strategies, allowing these viruses to persist for life despite the presence of a strong antiviral immune response. Although viral evasion tactics appear to target virtually any stage of the innate and adaptive host immune response, detailed knowledge is now available on the molecular mechanisms underlying herpesvirus obstruction of MHC class I-restricted antigen presentation to T cells. This opens the way for clinical application. Here, we review and discuss recent efforts to exploit human herpesvirus MHC class I evasion strategies for the rational design of novel strategies for vaccine development, cancer treatment, transplant protection and gene therapy.  相似文献   

20.

Background  

Recently, a great effort in microarray data analysis is directed towards the study of the so-called gene sets. A gene set is defined by genes that are, somehow, functionally related. For example, genes appearing in a known biological pathway naturally define a gene set. The gene sets are usually identified from a priori biological knowledge. Nowadays, many bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encyclopedia of Genes and Genomes, among others). Although pathways maps carry important information about the structure of correlation among genes that should not be neglected, the currently available multivariate methods for gene set analysis do not fully exploit it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号