首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

4.
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC)] is recognized as a promising drug for the treatment of poxvirus infections, but drug resistance can arise by a mechanism that is poorly understood. We show here that in vitro selection for high levels of resistance to HPMPC produces viruses encoding two substitution mutations in the virus DNA polymerase (E9L) gene. These mutations are located within the regions of the gene encoding the 3'-5' exonuclease (A314T) and polymerase (A684V) catalytic domains. These mutant viruses exhibited cross-resistance to other nucleoside phosphonate drugs, while they remained sensitive to other unrelated DNA polymerase inhibitors. Marker rescue experiments were used to transfer A314T and/or A684V alleles into a vaccinia virus Western Reserve strain. Either mutation alone could confer a drug resistance phenotype, although the degree of resistance was significantly lower than when virus encoded both mutations. The A684V substitution, but not the A314T change, also conferred a spontaneous mutator phenotype. All of the HPMPC-resistant recombinant viruses exhibited reduced virulence in mice, demonstrating that these E9L mutations are inextricably linked to reduced fitness in vivo. HPMPC, at a dose of 50 mg/kg of body weight/day for 5 days, still protected mice against intranasal challenge with the drug-resistant virus with A314T and A684V mutations. Our studies show that proposed drug therapies offer a reasonable likelihood of controlling orthopoxvirus infections, even if the viruses encode drug resistance markers.  相似文献   

5.
6.
The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2′-5′-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations.  相似文献   

7.
8.
Pathogenesis of vaccinia (IHD-T) virus infection in BALB/cAnN mice   总被引:4,自引:0,他引:4  
The pathogenesis of lesions produced by the IHD-T strain of vaccinia virus during vaccination of BALB/cAnN mice was characterized by virological, morphological, and serological methods. Infectious vaccinia virus was detected at the vaccination site for up to 16 days and was also found, to a variable extent, in lung, thymus, spleen, and liver between days 3 and 5. Viral antigen was detected at the vaccination site by avidin-biotin-linked immunoperoxidase cytochemistry, but only when viral concentrations were at least 10(5.0) log10 TCID per mg of tissue. The primary vaccination lesions were typical pocks characterized by sequential development of epidermal necrosis, vesicle formation, and ulceration and by dermal inflammation dominated by mononuclear cells. Type B inclusions were found in epidermis, but Type A inclusions were not seen. Seroconversion to vaccinia viral antigen was detected by day 8 with complement-fixation and immunofluorescence assays and by day 10 with an enzyme-linked immunosorbent assay.  相似文献   

9.
To investigate the in vivo role of interleukin-10 (IL-10) in viral infection, we compared infections with a recombinant vaccinia virus (VV) expressing IL-10 (VV-IL10) under control of the VV P7.5 promoter and a control virus (VV-beta gal) in normal and severe combined immunodeficient mice. In normal mice, VV-IL10 infection resulted in less natural killer cell activity at 3 days postinfection and less VV-specific cytotoxic T-cell activity at 6 or 7 days postinfection than VV-beta gal infection. However, the use of dermal scarification or intraperitoneal, intranasal, or intracerebral inoculation into immunocompetent mice resulted in no difference between VV-IL10 and VV-beta gal in visible lesions, mortality, protective immunity to a 100-fold lethal VV challenge, or VV-specific antibody response. In the immunodeficient mice, VV-IL10 infection resulted in greater natural killer cell activity and lower virus replication than VV-beta gal infection. These in vivo effects were subtler and more complex than had been anticipated. From the VV-IL10 murine model, the Epstein-Barr virus-encoded homolog of human IL-10, BCRF1, may provide a selective advantage by blunting the early human natural killer cell and cytotoxic T-cell responses so that Epstein-Barr virus can establish a well-contained latent infection in B lymphocytes.  相似文献   

10.
Mutations in the genes that encode Fas or Fas ligand (FasL) can result in poor restraints on lymphocyte activation and in increased susceptibility to autoimmune disorders. Because these mutations portend a continuously activated immune state, we hypothesized that they might in some cases confer resistance to infection. To examine this possibility, the immune response to, morbidity caused by, and clearance of vaccinia virus (VACV) Western Reserve was examined in 5- to 7-week-old Fas mutant (lpr) mice, before an overt lymphoproliferative disorder was observable. On day 6 after VACV infection, C57BL/6-lpr (B6-lpr) mice had decreased morbidity, decreased viral titers, and an increased percentage and number of CD4(+) and CD8(+) T cells. As early as day 2 after infection, B6-lpr mice had decreased liver and spleen viral titers and increased numbers of and increased gamma interferon (IFN-γ) production by several different effector cell populations. Depletion of individual effector cell subsets did not inhibit the resistance of B6-lpr mice. Uninfected B6-lpr mice also had increased numbers of NK cells, γδ(+) T cells, and CD44(+) CD4(+) and CD44(+) CD8(+) T cells compared to uninfected B6 mice. Antibody to IFN-γ resulted in increased virus load in both B6 and B6-lpr mice and eliminated the differences in viral titers between them. These results suggest that IFN-γ produced by multiple activated leukocyte populations in Fas-deficient hosts enhances resistance to some viral infections.  相似文献   

11.
12.
Vanlandschoot P  Leroux-Roels G 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(10):6253; author reply 6253-6253; author reply 6255
  相似文献   

13.
14.
Vaccinia viruses have been genetically engineered to express foreign antigens. Immunization with these chimeric viruses protects experimental animals against challenge with the relevant infectious agent. These results, together with the successful history of vaccinia virus as an immunizing agent against smallpox, provide the impetus for employing live recombinant vaccinia viruses for the immunoprophylaxis of infectious diseases of both human and veterinary importance.  相似文献   

15.
The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.  相似文献   

16.
It was found that hepatitis B surface antigen (HBsAg) expressed by recombinant vaccinia virus (RVV), rProHBmO143, harboring HBsAg gene was immunologically similar to plasma-derived HBsAg and immunogenicity of the rProHBmO143 was possible to evaluate by the skin scarification (SS) method using BALB/c mice. When we compared the immunogenicity of 10(8) TCID50 of the rProHBmO143 by the SS method with that of 0.125 ml of the plasma-derived hepatitis B vaccine (HB vaccine) given by intraperitoneal inoculation, the anti-HBs antibody eliciting ability of its RVV was almost the same as that of the HB vaccine with maintenance of high antibody titers, and the antibody responses rose further by re-inoculation in association with HB vaccine, especially by using its RVV as a priming. Also, no virus was recovered from the liver, spleen or brain of the mice inoculated with rProHBmO143 by the SS method. Furthermore, in mice inoculated with rProHBmO143 and then inoculated with RVV harboring Japanese encephalitis virus (JEV) gene 24-weeks later, no effect was recognized on duration of anti-HBs antibody persistence while anti-JEV antibody is being produced. These results suggest that the rProHBmO143 is likely to become a practical live vaccine; a different immunization schedule to protect against hepatitis B virus and two or more kinds of RVV vaccines may be usable for the same animal or humans at intervals of some years.  相似文献   

17.
Mechanisms of protection of mice from Sendai virus, which is exclusively pneumotropic and causes a typical respiratory disease, by immunization with recombinant vaccinia viruses (RVVs) were investigated. Although the RVV carrying a hemagglutinin-neuraminidase gene of Sendai virus (Vac-HN) propagated in the noses and lungs of mice by either intranasal (i.n.) or intraperitoneal (i.p.) inoculation, no vaccinia virus antigens were detected in the mucosal layer of upper and lower airways of the i.p.-inoculated mice. The mice immunized i.n. with Vac-HN or Vac-F (the RVV carrying a fusion protein gene of Sendai virus) demonstrated the strong resistance to Sendai virus challenge both in the lung and in the nose, whereas the i.p.-immunized mice showed almost no resistance in the nose but showed a partial resistance in the lung. Titration of Sendai virus-specific antibodies in the nasal wash (NW), bronchoalveolar lavage (BAL), and serum collected from the Vac-F-immunized mice showed that the NW from the i.n.-immunized mice contained immunoglobulin A (IgA) antibodies but no IgG and the BAL from the mice contained both IgA and IgG antibodies. On the other hand, neither IgA nor IgG antibodies were detected in the NW from the i.p.-immunized mice and only IgG antibodies were detected in the BAL, although both i.n.- and i.p.-immunized mice exhibited similar levels of serum IgG, IgA, and neutralizing antibodies. The resistance to Sendai virus in the noses of i.n.-immunized mice could be abrogated by the intranasal instillation of anti-mouse IgA but not of anti-IgG antiserum, while the resistance in the lung was not significantly abrogated by such treatments. These results demonstrate that IgA is a major mediator for the immunity against Sendai virus induced by the RVVs and IgG is a supplementary one, especially in the lung, and that the RVV should be intranasally inoculated to induce an efficient mucosal immunity even if it has a pantropic nature.  相似文献   

18.
Mice immunized with two intragastrically administered doses of a replication-deficient recombinant vaccinia virus containing the hemagglutinin and nucleoprotein genes from H1N1 influenza virus developed serum anti-H1 immunoglobulin G (IgG) antibody that completely protected the lungs from challenge with H1N1. Almost all of the mice given two intragastric doses also developed mucosal anti-H1 IgA antibody, and those with high anti-H1 IgA titers had completely protected noses. Intramuscular injection of the vaccine protected the lungs but not the noses from challenge. We also found that the vaccine enhanced recovery from infection caused by a shifted (H3N2) influenza virus, probably through the induction of nucleoprotein-specific cytotoxic T-lymphocyte activity. A replication-deficient, orally administered, enteric-coated, vaccinia virus-vectored vaccine might safely protect humans against influenza.  相似文献   

19.
Mice immunized with recombinant vaccinia virus (VACC) expressing Venezuelan equine encephalitis (VEE) virus capsid protein and glycoproteins E1 and E2 or with attenuated VEE TC-83 virus vaccine developed VEE-specific neutralizing antibody and survived intraperitoneal challenge with virulent VEE virus strains including Trinidad donkey (subtype 1AB), P676 (subtype 1C), 3880 (subtype 1D), and Everglades (subtype 2). However, unlike immunization with TC-83 virus, immunization with the recombinant VACC/VEE virus did not protect mice from intranasal challenge with VEE Trinidad donkey virus. These results suggest that recombinant VACC/VEE virus is a vaccine candidate for equines and humans at risk of mosquito-transmitted VEE disease but not for laboratory workers at risk of accidental exposure to aerosol infection with VEE virus.  相似文献   

20.
TLR3 increases disease morbidity and mortality from vaccinia infection   总被引:2,自引:0,他引:2  
Innate immunity is required for effective control of poxvirus infections, but cellular receptors that initiate the host response to these DNA viruses remain poorly defined. Given this information and the fact that functions of TLRs in immunity to DNA viruses remain controversial, we investigated effects of TLR3 on pathogenesis of vaccinia virus, a prototype poxvirus. We used a recombinant strain Western Reserve vaccinia virus that expresses firefly luciferase to infect wild-type C57BL/6 and TLR3-/- mice through intranasal inoculation. Bioluminescence imaging showed that TLR3-/- mice had substantially lower viral replication in the respiratory tract and diminished dissemination of virus to abdominal organs. Mice lacking TLR3 had reduced disease morbidity, as measured by decreased weight loss and hypothermia after infection. Importantly, TLR3-/- mice also had improved survival relative to wild-type mice. Infected TLR3-/- mice had significantly reduced lung inflammation and recruitment of leukocytes to the lung. Mice lacking TLR3 also had lower levels of inflammatory cytokines, including IL-6, MCP-1, and TNF-alpha in serum and/or bronchoalveolar lavage fluid, but levels of IFN-beta did not differ between genotypes of mice. To our knowledge, our findings show for the first time that interactions between TLR3 and vaccinia increase viral replication and contribute to detrimental effects of the host immune response to poxviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号