首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sugar composition of the polysaccharide portion of lipopolysaccharides (LPS) was determined for 42 serovars of non-O1 Vibrio cholerae, i.e., from serogroups O2 to O41, O44, and O68. On the basis of their compositional sugar pattern, they were classified into 24 chemotypes. 2-Keto-3-deoxyoctonate (KDO) was totally undetectable by the conventional color test (Weissbach's reaction) under the conventional hydrolysis conditions. Instead, a kind of KDO-like substance, which was positive in the reaction but not identical to KDO, was found in serogroup O19. Fructose, a characteristic sugar constituent of O1 V. cholerae LPS, was found in 33 serogroups but was absent from nine serogroups, approximately 20% of the members of this group so far examined.  相似文献   

2.
A structural investigation has been carried out on the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides (LPS) isolated by dephosphorylation, O-deacylation and N-deacylation. The carbohydrate backbone is a short-chain saccharide consisting of nine monosaccharide units i.e., 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA), L-glycero-D-manno-heptose (L,D-Hep), D-glycero-D-manno-heptose (D,D-Hep), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), and 2 mol of 2-amino-2-deoxy-D-glucose (D-glucosamine, GlcN). Based on the data obtained by NMR spectroscopy, fast-atom bombardment mass spectrometry (FABMS) and methylation analysis, a structure was elucidated for the carbohydrate backbone of O2 LPS. In the native O2 LPS, the 2-amino-2-deoxy-D-glucitol (GlcN-ol) at the reducing end of the nonasaccharide is present as GlcN. The lipid A backbone is a beta-D-GlcN-(1-->6)-D-GlcN disaccharide as is the case for many Gram-negative bacterial LPS. The lipid A proximal Kdo is substituted by the distal part of the carbohydrate chain at position-5. In the native O2 LPS, D-galacturonic acid, which is liberated from LPS by mild acid treatment or by dephosphorylation in hydrofluoric acid, is present although its binding position is unknown at present.  相似文献   

3.
On hydrolysis, the purified lipopolysaccharide (LPS) isolated from Vibrio cholera, Inaba 569 B, yielded glucose, mannose, a heptose behaving like d-glycero-l-manno-heptose and one behaving like d-glycero-l-gluco-heptose, 2-amino-2-deoxy-glucose, and glucuronic acid in the molar ratios of ~9:4:5:1:2:5. Studies on the LPS, the polysaccharide (PS), and carboxyl-reduced LPS showed that the PS has a branched structure, with (1→2)-linked mannopyranosyl and a heptopyranosyl, and (1→4)-linked glucopyranosyluronic and 2-amino-2-deoxyglucopyranosyl residues in the interior part of the molecule, and glucopyranosyl and heptopyranosyl residues as nonreducing end-groups.  相似文献   

4.
The composition, structure, and certain biological properties of lipopolysaccharides (LPS) isolated from six strains of bacteria Pseudomonas syringae pv. atrofaciens pathogenic for grain-crops (wheat, rye) are presented. The LPS-protein complexes were isolated by a sparing procedure (extraction from microbial cells with a weak salt solution). They reacted with the homologous O sera and contained one to three antigenic determinants. Against the cells of warm-blooded animals (mice, humans) they exhibited the biological activity typical of endotoxins (stimulation of cytokine production, mitogenetic activity, etc.). The LCD of the biovar type strain was highly toxic to mice sensitized with D-galactosamine. The structural components of LPS macromolecules obtained by mild acidic degradation were characterized: lipid A, core oligosaccharide, and O-specific polysaccharide (OPS). Fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1 were identified in lipid A of all the strains, as well as the components of the hydrophilic part: glucosamine (GlcN), ethanolamine (EtN), phosphate, and phosphoethanolamine (EtN-P). In the core LPS, glucose (Glc), rhamnose (Rha), L-glycero-D-manno-heptose (Hep), GlcN, galactosamine (GalN), 2-keto-3-deoxy-D-mannooctonic acid (KDO), alanine (Ala), and phosphate were present. The O chain of all the strains consisted of repeated elements containing a linear chain of three to four L- (two strains) or D-Rha (four strains) residues supplemented with a single residue of 3-acetamido-3,6-dideoxy-D-galactose (D-Fucp3Nac), N-acetyl-D-glucosamine (D-GlcpNAc), D-fucose (D-Fucf), or D-Rhap (strain-dependent) as a side substitute. In different strains the substitution position for Rha residues in the repeated components of the major rhamnan chain was also different. One strain exhibited a unique type of O-chain heterogeneity. Immunochemical investigation of the LPS antigenic properties revealed the absence of close serological relations between the strains of one pathovar; this finding correlates with the differences in their OPS structure. Resemblance between the investigated strains and other P. syringae strains with similar LPS structures was revealed. The results of LPS analysis indicate the absence of correlation between the OPS structure and the pathovar affiliation of the strains.  相似文献   

5.
Oligosaccharides released from the lipooligosaccharides (LOS) of Haemophilus influenzae nontypable strain 2019 by mild acid hydrolysis were fractionated by size exclusion chromatography and analyzed by liquid secondary ion mass spectrometry. The major component of the heterogeneous mixture was found to be a hexasaccharide of Mr 1366, which lost two phosphoethanolamine groups upon treatment with 48% aqueous HF. The dephosphorylated hexasaccharide was purified and shown by tandem mass spectrometry, composition analysis, methylation analysis, and two-dimensional nuclear magnetic resonance studies to be Gal beta 1----4Glc beta 1----(Hep alpha 1----2Hep alpha 1----3) 4Hep alpha 1----5anhydro-KDO, where Hep is L-glycero-D-manno-heptose and KDO is 3-deoxy-D-manno-octulosonic acid. An analogous structure containing authentic KDO was generated from LOS that had been HF-treated prior to acetic acid hydrolysis, suggesting that the reducing terminal anhydro-KDO moiety is produced as an artifact of the hydrolysis procedure by beta-elimination of a phosphate substituent from C-4 of KDO. Mass spectral analyses of O-deacylated LOS and free lipid A confirmed that, in addition to the two phosphoethanolamines on the oligosaccharide and two phosphates on the lipid A, another phosphate group exists on the KDO. This KDO does not appear to be further substituted with additional KDO residues in intact H. influenzae 2019 LOS. The terminal disaccharide epitope, Gal beta 1----4Glc beta 1----, of the hexasaccharide is also present on lactosylceramide, a precursor to human blood group antigens. It is postulated that the presence of this structure on H. influenzae LOS may represent a form of host mimicry by the pathogen.  相似文献   

6.
Glucosamine (GlcN) is an amino sugar sold over-the-counter and is widely used as a dietary supplement to relieve symptoms of osteoarthritis. It is not known whether it is the GlcN alone or one of its many possible nonenzymatic glycation products that is responsible for this effect. The current study demonstrates that reducing sugars form advanced glycation endproducts (AGEs) with GlcN and, as a result, decrease GlcN autocondensation by reducing the availability of the GlcN amino group. Capillary electrophoresis (CE) was used to analyze the in vitro Maillard reaction of GlcN with glyceraldehyde (GA), glucose (Glc), and fructose (Fru) as well as their inhibition of GlcN autocondensation under physiological conditions. Formation of AGEs was monitored by UV and fluorescence spectroscopy. Major components were separated by CE using a bare capillary and UV detection at 214 nm. AGE species were separated by HPLC and were complementary to the CE results. The effects of sugar concentration and incubation time on the AGE profile are also reported for each of the GlcN reducing sugar model systems. A simple and rapid CE method was developed to analyze the AGE formation in this initial report of the reaction of reducing sugars with the amino group of GlcN.  相似文献   

7.
The chemical properties of a lipopolysaccharide (LPS) isolated from a new O-antigenic form (O13) of Vibrio parahaemolyticus were investigated. The LPS contained glucose, galactose, L -glycero-D -manno-heptose and glucosamine. 2-Keto-3-deoxy-octonate (KDO) was not detected in the LPS by the periodate-thiobarbituric acid test (Weissbach's reaction) under conventional hydrolysis conditions. Instead, phosphorylated KDO (X1 and X2) was found in its strong-acid hydrolysate. This sugar composition was identical to that of V. parahaemolyticus O3, O5 and O11 LPS, indicating that, based on the sugar composition, O13 LPS belongs to Chemotype III to which O3, O5 and O11 belong. In addition, structural study demonstrated the presence of KDO 4-phosphate in its inner-core region.  相似文献   

8.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide from Providencia alcalifaciens O27 and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments. It was found that the polysaccharide is built up of linear partially O-acetylated tetrasaccharide repeating units and has the following structure: [structure: see text] where Qui4NFo stands for 4-formamido-4,6-dideoxyglucose (4-formamido-4-deoxyquinovose). The O-polysaccharide structure of Providencia stuartii O43 established earlier was revised with respect to the configuration of the constituent 4-amino-4,6-dideoxyhexose (from Rha4N to Qui4N).  相似文献   

9.
The structure of lipid A core region of the lipopolysaccharides (LPS) from Proteus mirabilis serotypes O6, O57 and O48 was determined using NMR, MS and chemical analysis of the oligosaccharides, obtained by mild acid hydrolysis, alkaline deacylation, and deamination of LPS: [see text for structure]. Incomplete substitutions are indicated by bold italic type. All sugars are present in pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DD-Hep is the residue of D-glycero-alpha-D-manno-Hep, L-Ara4N is 4-amino-4-deoxy-L-arabinose, Qui4NAlaAla is the residue of 4-N-(L-alanyl-L-alanyl)-4-amino-4,6-dideoxyglucose. All sugars except L-Ara4N have D-configuration. beta-GalA* is partially present in the form of amide with 1,4-diaminobutane (putrescine)-HN(CH2)4NH2 or spermidine-HN(CH2)3NH(CH2)4NH2.  相似文献   

10.
A chemotaxonomic study was carried out with a new serotyping scheme comprising 35 O-antigen groups of Vibrio fluvialis on the basis of the sugar composition of the polysaccharide portion of their lipopolysaccharide (LPS). A previously developed rapid method of preparing samples for compositional sugar analysis was employed. The 35 O-antigen groups were divided into 21 chemotypes. It is noted that a rarely occurring component sugar of gram-negative bacterial LPS, D -glycero-D -manno-heptose, and two kinds of uronic acids, i.e., galacturonic acid of a weakly bound type and glucuronic acid of a strongly bound type, were found in common in all the 21 chemotypes. A characteristic sugar component of gram-negative bacterial LPS, 2-keto-3-deoxyoctonate (KDO), was not detectable in any of the 21 chemotypes. Instead, three kinds of “KDO-like substances” were found, one in each of three chemotypes (III, XI and XVII). They were strongly positive in Weissbach's periodate-thiobarbituric acid test for KDO, but definitely not identical to it in high-voltage paper electrophoresis (HVPE); the substance present in chemotype XI was indicated by HVPE to be 3-deoxy-D -threo-hexulosonic acid which is a sugar constituent of Vibrio parahaemolyticus O7 and O12 LPS.  相似文献   

11.
The dominant part of the O-antigen of Vibrio cholerae is a homopolysaccharide composed of (1→2)-linked 4-amino-4,6-dideoxy-α-d-mannopyranosyl (perosaminyl) residues, the amino groups of which are acylated by 3-deoxy-l-glycero-tetronic acid. Most of the amino sugar is decomposed during acid hydrolysis. Treatment of the polymer with anhydrous hydrogen fluoride, which cleaves the glycosidic linkages but does not cause N-deacylation, followed by acid hydrolysis under mild conditions, produced the monomer in good yield. Treatment of the N-deacylated polysaccharide with nitrous acid caused deamination with concomitant rearrangements, typical of 4-amino-4-deoxyhexopyranosyl residues in which the amino group occupies an equatorial position.  相似文献   

12.
An extracellular polysaccharide containing glucose, mannose, D-manno-octulosonic acid (KDO), an unidentified component (X), and acetyl groups in the molar ratio of 1.3:3.8:1.6:1.1:2.9, was obtained from the incubated medium of a Xanthomonas species. The extracellular polysaccharide contained traces of phosphate and nitrogen but no lipid. Mild hydrolysis with 0.025M sulfuric acid released all of the KDO in the polysaccharide and a KDO-free product was obtained, which on hydrolysis with 0.05M sulfuric acid, gave mainly an oligosaccharide containing glucose, mannose, and X in molar ratio of 1:1:1. The reducing end-group of this oligosaccharide was X, and other hexose residues were linked (1 → 4). Compound X seems to be a 6-deoxyhexose that differs from fucose and rhamnose.  相似文献   

13.
Lipopolysaccharide (LPS) was isolated and purified from Wolinella recta ATCC 33238 by the phenol-water procedure and RNAase treatment. The sugar components of the LPS were rhamnose, mannose, glucose, heptose, 2-keto-3-deoxyoctonate (KDO) (3-deoxy-D-manno-octulosonate) and glucosamine. The degraded polysaccharide prepared from LPS by mild acid hydrolysis was fractionated by Sephadex G-50 gel chromatography into three fractions: (1) a high-molecular-mass fraction, eluting just behind the void volume, consisting of a long chain of rhamnose (22 mols per 3 mols of heptose residue) with attached core oligosaccharide; (2) a core oligosaccharide containing heptose, glucose and KDO, substituted with a short side chain of rhamnose; (3) a low-molecular-mass fraction containing KDO and phosphate. The main fatty acids of the lipid A were C12:0, C14:0, 3-OH-C14:0 and 3-OH-C16:0. The biological activities of the LPS were similar to those of Salmonella typhimurium LPS in activation of the clotting enzyme of Limulus amoebocytes, the Schwartzman reaction and mitogenicity for murine lymphocytes, although all the biological activities of lipid A were lower than those of intact LPS.  相似文献   

14.
Lipopolysaccharides (LPS) were isolated from the crude bacterial mass of the Pseudomonas syringae pv. maculicola IMV 381 collection culture and its virulent and avirulent subcultures isolated earlier from the heterogeneous collection culture due to its natural variability during long-term storage. The composition, immunochemical properties, and certain parameters of the biological activity of the LPS preparations obtained were studied. The structural parts of the LPS macromolecule--lipid A, the core oligosaccharide, and O-specific polysaccharide (OPS)--were isolated and characterized. The following fatty acids were identified in the lipid A composition of all cultures: 3-OH-C10:0, C12:0, 2-OH-C12:0, 3-OH-C12:0, C16:1, C16:0, C18:1, and C18:0. Glucosamine (GlcN), ethanolamine (EtN), phosphoethanolamine (EtN-P), and phosphorus (P) were revealed in the hydrophilic portion of the macromolecule. In the core portion of the LPS macromolecule, glucose (Glc), rhamnose (Rha), GlcN, galactosamine (GalN), 2-keto-3-deoxyoctulosonic acid (KDO), alanine (Ala), and P were found. The peculiarities of the structure of LPS isolated from the stable collection culture (LPS(stab)) and its virulent (LPS(vir)) and avirulent (LPS(air)) subcultures were studied. LPS(vir) and LPS(avir) were identical in the monosaccharide composition and contained as the main components L-rhamnose (L-Rha) and 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc), like LPS(stab) studied earlier. The NMR spectra of LPS(vir) were identical to the spectra of LPS(stab), whose O-chain repeating unit structure was studied by us earlier, whereas LPS(avir) differed from LPS(vir) in the NMR spectrum and was identified by us as the SR form. LPS(avir) was serologically identical to LP(stab) and LPS(vir). Hence, the degree of polymerism of the LPS O-chain of P. syringae pv. maculicola IMV 381 is the main virulence factor in the infected model plants. Serological relationships were studied between P. syringae pv. maculicola IMV 381 and the strains of other pathovars with structurally similar LPS.  相似文献   

15.
Abstract Structural analysis of the 2-keto-3-deoxyoctonate region of lipopolysaccharide (LPS) isolated from Porphyromonas (Bacteroides) gingivalis was carried out. The substitution of the polysaccharide portion on the KDO was determined by gas chromatography/mass spectrometry of the product obtained by sequential derivatization of the LPS, including dephosphorylation, permethylation, carboxyl reduction, partial hydrolysis, carbonyl reduction, complete hydrolysis and O -acetylation. It was revealed that the KDO carries the polysaccharide on its position C5 and is phosphorylated on either position C7 or C8, although its exact position is not determined. The structure of the KDO region of P. gingivalis LPS in Gram-negative bacterial LPS had not hitherto been elucidated.  相似文献   

16.
Cell walls of Microcystis sp. PCC 7806 were purified from cell homogenates by sucrose density centrifugation and Triton X-100 extraction. The outer membrane contained carotenoids, two major peptidoglycan-associated proteins (Mr 49,000 and 52,000), and lipopolysaccharide (LPS) as indicated by the presence of 3-hydroxy fatty acids (3-OH-14:0, 3-OH-16:0, 3-OH-18:0), 4-oxo-18:0 fatty acid, and GlcN as lipid A components in addition to rare O-methyl sugars (2-O-methyl-6-deoxyhexoses I and II). The peptidoglycan (A1 gamma-type) was found to be covalently linked to a wall polysaccharide composed of GlcN, ManN, Man, Glc, and phosphate.  相似文献   

17.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation contained S- and R-forms of molecules. The structural components of the LPS molecule—lipid A, core oligosaccharide, and O-specific polysaccharide—were obtained in the individual state and characterized. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as 2-amino-2,6-dideoxygalactose (FucN) and 3-amino-3,6-dideoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzymatic assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

18.
Catalytic residues and the mode of action of the exo-beta-D-glucosaminidase (GlcNase) from Amycolatopsis orientalis were investigated using the wild-type and mutated enzymes. Mutations were introduced into the putative catalytic residues resulting in five mutated enzymes (D469A, D469E, E541D, E541Q, and S468N/D469E) that were successfully produced. The four single mutants were devoid of enzymatic activity, indicating that Asp469 and Glu541 are essential for catalysis as predicted by sequence alignments of enzymes belonging to GH-2 family. When mono-N-acetylated chitotetraose [(GlcN)3-GlcNAc] was hydrolyzed by the enzyme, the nonreducing-end glucosamine unit was produced together with the transglycosylation products. The rate of hydrolysis of the disaccharide, 2-amino-2-deoxy-D-glucopyranosyl 2-acetamido-2-deoxy-D-glucopyranose (GlcN-GlcNAc), was slightly lower than that of (GlcN)2, suggesting that N-acetyl group of the sugar residue located at (+1) site partly interferes with the catalytic reaction. The time-course of the enzymatic hydrolysis of the completely deacetylated chitotetraose [(GlcN)4] was quantitatively determined by high-performance liquid chromatography (HPLC) and used for in silico modeling of the enzymatic hydrolysis. The modeling study provided the values of binding free energy changes of +7.0, -2.9, -1.8, -0.9, -1.0, and -0.5 kcal/mol corresponding, respectively, to subsites (-2), (-1), (+1), (+2), (+3), and (+4). When chitosan polysaccharide was hydrolyzed by a binary enzyme system consisting of A. orientalis GlcNase and Streptomyces sp. N174 endochitosanase, the highest synergy in the rate of product formation was observed at the molar ratio 2:1. Thus, GlcNase would be an efficient tool for industrial production of glucosamine monosaccharide.  相似文献   

19.
The composition, structure, and certain biological properties of lipopolysaccharides (LPS) isolated from six strains of bacteria Pseudomonas syringae pv. atrofaciens pathogenic for grain-crops (wheat, rye) are presented. The LPS-protein complexes were isolated by a sparing procedure (extraction from microbial cells with a weak salt solution). They reacted with the homologous O sera and contained one to three antigenic determinants. Against the cells of warm-blooded animals (mice, humans) they exhibited the biological activity typical of endotoxins (stimulation of cytokine production, mitogenetic activity, etc.). The LCD of the biovar type strain was highly toxic to mice sensitized with D-galactosamine. The structural components of LPS macromolecules obtained by mild acidic degradation were characterized: lipid A, core oligosaccharide, and O-specific polysaccharide (OPS). Fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1 were identified in lipid A of all the strains, as well as the components of the hydrophilic part: glucosamine (GlcN), ethanolamine (EtN), phosphate, and phosphoethanolamine (EtN-P). In the core LPS, glucose (Glc), rhamnose (Rha), L-glycero-D-manno-heptose (Hep), GlcN, galactosamine (GalN), 2-keto-3-deoxy-D-mannooctonoic acid (KDO), alanine (Ala), and phosphate were present. The O chain of all the strains consisted of repeated elements containing a linear chain of three to four L-(two strains) or D-Rha (four strains) residues supplemented with a single residue of 3-acetamido-3,6-dideoxy-D-galactose (D-Fucp3Nac), N-acetyl-D-glucosamine (D-GlcpNAc), D-fucose (D-Fucf), or D-Rhap (strain-dependent) as a side substituent. In different strains the substitution position for Rha residues in the repeated components of the major rhamnan chain was also different. One strain exhibited a unique type of O-chain heterogeneity. Immunochemical investigation of the LPS antigenic properties revealed the absence of close serological relations between the strains of one pathovar; this finding correlates with the differences in their OPS structure. Resemblance between the investigated strains and other P. syringae strains with similar LPS structures was revealed. The results of LPS analysis indicate the absence of correlation between the OPS structure and the pathovar affiliation of the strains.  相似文献   

20.
Structural characterization studies have been carried out on the carbohydrate backbone of Vibrio parahaemolyticus serotype O6 lipopolysaccharides (LPS). The carbohydrate backbone isolated from O6 LPS by sequential derivatization, that is, dephosphorylation, O-deacylation, pyridylamination, N-deacylation and N-acetylation, is a nonasaccharide consisting of 3 mol of D-glucosamine (GlcN) (of which one is pyridylaminated), 2 mol of L-glycero-D-manno-heptose (Hep), and 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA) and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Structural analyses by nuclear magnetic resonance spectroscopy and fast-atom bombardment mass spectrometry demonstrated that the carbohydrate backbone is β-Galp-(1→2)-α-Hepp-(1→3)-α-Hepp-(1→5)-α-Kdop-(2→6)-β-GlcpNAc-(1→6)-GlcNAc-PA, in which the 3-substituted α-Hepp is further substituted by β-GlcpNAc-(1→4)-β-Glcp at position 4 and by β-GlcpA at position 2. In native O6 LPS, an additional 1 mol of D-galacturonic acid, which is liberated by dephosphorylation in hydrofluoric acid, is present at an unknown position. A previous study by the present authors reported that, of 13 O-serotype LPS of V. parahaemolyticus, the only LPS from which Kdo was detected was from O6 LPS after mild acid hydrolysis. In the present study, we have demonstrated that only 1 mol of Kdo is present at the lipid A proximal position, a component which is common to the LPS in all serotypes of the bacterium, and that there is no additional Kdo in the carbohydrate backbone of O6 LPS. ELISA and ELISA inhibition analysis using antisera against O6 and Salmonella enterica Minnesota R595 and LPS of both strains further revealed that Kdo is not involved as an antigenic determinant of O6 LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号