首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of fertile A. azarae females with a chromosome sex pair indistinguishable from that of males was reported more than 35 years ago. These heterogametic females were initially thought to occur due to an extreme process of dosage compensation in which X inactivation was restricted to Xp and complemented by a deletion of Xq (Xx females). Later on, a C-banding analysis of A. mollis variant females showed that these specimens were in fact XY* sex reversed and not Xx females. The finding of positive testing for Zfy and Sry multiple-copy genes in Akodon males and heterogametic females confirmed the XY* assumption. At the present time, XY* sex reversed females have been found to exist in nine Akodon species. Akodon heterogametic females produce X and Y* oocytes, which upon sperm fertilization give rise to viable XX (female), XY* (female), and XY (male) embryos, and to non-viable Y*Y zygotes. Heterozygous females exhibit a better reproductive performance than XX females in order to compensate the Y*Y zygote wastage. XY* sex reversed females are assumed to occur due to a deficient Sry expression resulting in the development of ovaries instead of testes. Moreover, the appearance of Y* elements is a highly recurrent event. It is proposed that homozygosity for an autosomal or pseudoautosomal recessive mutation (s-) inhibits Sry expression giving rise to XY* embryos with ovary development. Location of the Y* chromosome in the female germ cell lineage produces an ovary-specific imprinting of the Sry* gene maintaining its defective expression through generations independently from the presence or absence of s- homozygosity. By escaping the ovary-specific methylation some Y* chromosomes turn back to normal Ys producing Y oocytes capable of generating normal male embryos when fertilized by an X sperm. Fluctuations in the rate of variant females in field populations and in laboratory colonies of Akodon depend on the balance between the appearance of new variant females (s-/s-, XY* specimens) and the extinction of sex reversed specimens due to imprinting escape.  相似文献   

2.
陆静  陈赢男  尹佟明 《植物学报》2021,56(1):90-103
雌雄异株植物是研究性别决定遗传机制及性染色体起源与进化的理想材料,而克隆性别决定基因是解析性别决定遗传机制的关键。木本植物中有丰富的雌雄异株植物,且包括2种相反的性别决定系统:XY型(雌株为同配型的XX,雄株为异配型的XY)和ZW型(雌株为异配型的ZW,雄株为同配型的ZZ)。此外,不同性别植株的经济价值也有所不同。在木...  相似文献   

3.
4.
The Dominance Theory of Haldane''s Rule   总被引:21,自引:12,他引:9       下载免费PDF全文
M. Turelli  H. A. Orr 《Genetics》1995,140(1):389-402
``HALDANE's rule' states that, if species hybrids of one sex only are inviable or sterile, the afflicted sex is much more likely to be heterogametic (XY) than homogametic (XX). We show that most or all of the phenomena associated with HALDANE's rule can be explained by the simple hypothesis that alleles decreasing hybrid fitness are partially recessive. Under this hypothesis, the XY sex suffers more than the XX because X-linked alleles causing postzygotic isolation tend to have greater cumulative effects when hemizygous than when heterozygous, even though the XX sex carries twice as many such alleles. The dominance hypothesis can also account for the ``large X effect,' the disproportionate effect of the X chromosome on hybrid inviability/sterility. In addition, the dominance theory is consistent with: the long temporal lag between the evolution of heterogametic and homogametic postzygotic isolation, the frequency of exceptions to HALDANE's rule, puzzling Drosophila experiments in which ``unbalanced' hybrid females, who carry two X chromosomes from the same species, remain fertile whereas F(1) hybrid males are sterile, and the absence of cases of HALDANE's rule for hybrid inviability in mammals. We discuss several novel predictions that could lead to rejection of the dominance theory.  相似文献   

5.
In mammals, sexual fate is determined by the chromosomes of the male and female gametes during fertilization. Males (XY) or females (XX) are produced when a sperm containing a Y or X-chromosome respectively fertilizes an X-chromosome-containing unfertilized egg. However, sexing of preimplantation stage embryos cannot be conducted visually. To address this, transgenic male mouse models with the ubiquitously expressed green fluorescent protein (GFP) transgene on X- (X-GFP) or Y-chromosomes (Y-GFP) have been established. However, when crossed with wild-type females, sexing of the preimplantation stage embryos by observing the GFP signal is problematic in some cases due to X-inactivation, loss of Y-chromosome (LOY), or loss of transgene fluorescence. In this study, a mouse model with the ubiquitously expressed red fluorescent protein (RFP) transgene on the Y-chromosome was generated since RFP is easily distinguishable from GFP signals. Unfortunately, the ubiquitously expressed tdTomato RFP transgene on the Y-chromosome (Y-RFP) mouse showed the lethal phenotype after birth. No lethal phenotypes were observed when the mitochondrial locating signal N-terminal of tdTomato (mtRFP) was included in the transgene construct. Almost half of the collected fertilized eggs from Y-mtRFP male mice crossed with wild-type females had an RFP signal at the preimplantation stage (E1.5). Therefore, XY eggs were recognized as RFP-positive embryos at the preimplantation stage. Furthermore, 100% sexing was observed at the preimplantation stage using the X-linked GFP/Y-linked RFP male mouse. The established Y-mtRFP mouse models may be used to study sex chromosome related research.  相似文献   

6.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

7.
In species with fertile XY females, such as South American field mice (genus Akodon), there are two types of mitochondrial DNA (mtDNA), one passing from XX females and one from XY females. The XX mothers pass their mtDNA to their XX daughters. The XY mothers, however, produce both XX and XY daughters. Because of this breeding scheme, the XY mtDNA remains isolated whereas the XX lineage is continuously invaded by XY mtDNA haplotypes. Using a set of recursion equations, I predicted that XY mtDNA haplotypes should rapidly spread through entire populations composed of both XX and XY females. I examined patterns of nucleotide polymorphism and divergence from the mtDNA control region as well as phylogenetic patterns for evidence of an mtDNA sweep. I compared patterns in two sister species, Akodon boliviensis and Akodon azarae, that are composed of 35% and 10% XY females, respectively. Akodon boliviensis XY females are found in all clades of a phylogenetic mtDNA tree consistent with the spread of mtDNA haplotypes. In addition, A. azarae mtDNA haplotypes showed no deviations from neutrality. These results, in combination with high levels of mtDNA nucleotide diversity in XY females, suggest an ancient origin (>10(4) generations) of XY females in both A. boliviensis and A. azarae.  相似文献   

8.
All therian mammals have a similar XY/XX sex‐determination system except for a dozen species. The African pygmy mouse, Mus minutoides, harbors an unconventional system in which all males are XY, and there are three types of females: the usual XX but also XX* and X*Y ones (the asterisk designates a sex‐reversal mutation on the X chromosome). The long‐term evolution of such a system is a paradox, because X*Y females are expected to face high reproductive costs (e.g., meiotic disruption and loss of unviable YY embryos), which should prevent invasion and maintenance of a sex‐reversal mutation. Hence, mechanisms for compensating for the costs could have evolved in M. minutoides. Data gathered from our laboratory colony revealed that X*Y females do compensate and even show enhanced reproductive performance in comparison to the XX and XX*; they produce significantly more offspring due to (i) a higher probability of breeding, (ii) an earlier first litter, and (iii) a larger litter size, linked to (iv) a greater ovulation rate. These findings confirm that rare conditions are needed for an atypical sex‐determination mechanism to evolve in mammals, and provide valuable insight into understanding modifications of systems with highly heteromorphic sex chromosomes.  相似文献   

9.
The Japanese frog, Rana rugosa, has two distinct sex chromosome types, XX/XY and ZZ/ZW. These two types are found in localized groups, separated geographically by a boundary area predicted to lie somewhere around Lake Biwa in central Japan. To determine this precise boundary, the heterogametic sex of 18 populations around Lake Biwa was examined by genotyping sex-linked genes. Phylogenetic relationships between the populations were also analyzed using mitochondrial 12S rRNA gene. Results showed that the Suzuka-Kii mountain range located east of Lake Biwa separated the XX/XY populations from the ZZ/ZW populations. Unexpectedly, from a phylogenetic perspective, the ZZ/ZW populations around Lake Biwa belonged not to the main ZW group but to the XY group. The authors propose that the ZZ/ZW populations around Lake Biwa diverged secondarily from the XX/XY group through a change of heterogametic sex, eventually forming a new group. This group was thus named the 'Neo-ZW group'. As the main ZW group inhabiting northwestern Japan is known to have a different male heterogametic origin, this finding shows that change of heterogametic sex from male to female may have occurred twice, and independently, during the frog speciation.  相似文献   

10.
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.  相似文献   

11.
Wang RX  Zhao YL 《Heredity》2008,100(3):326-336
In animals, hybrid sterility and inviability between closely related species often affect only the heterogametic sex (XY). This widespread phenomenon, known as Haldane's rule, is an early speciation event found across broad taxa, but the role of heterogametic hybrid incompatibilities, as opposed to homogametic ones, as a barrier in a speciation process remains obscure. It has been hypothesized that heterogametic incompatibility may be a more efficient mechanism in driving speciation. The population dynamics after (rather than before) the occurrence of sex-biased incompatibilities may account for Haldane's rule. In this study, a recursion model of hybrid zones was developed to investigate the differences between heterogametic and homogametic incompatibilities. The selection strengths and selection patterns of sex chromosome-linked, two-locus Bateson-Dobzhansky-Muller (BDM) genetic incompatibilities were examined. It is noted that a sex-biased hybrid incompatibility in a hybrid zone confers asymmetric and uneven impedance to gene flow. The clines of different loci in such a hybrid zone displayed diverse differentiation in their width, steepness and asymmetry. Alleles involved in the incompatibility face much stronger resistance to cross a hybrid zone. Different sex-biased BDM incompatibilities also affect the flow of neutral alleles differently. Compared to a homogametic one, heterogametic incompatibility is a weaker but more asymmetric barrier. These unique patterns of gene flow may explain uneven divergence among different genomic regions during speciation between some closely related species.  相似文献   

12.
13.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

14.
In dioecious plants of hemp ( Cannabis sativa L.), males are regarded as heterogametic XY and females as homogametic XX, although it is difficult to discriminate the X cytologically from the Y. The Y chromosome is somewhat larger than the X. Our aim was to analyse AFLP markers on X and Y, and to use them to gain some insight into the structure of the sex chromosomes. Markers located on the sex chromosomes can be grouped into different classes, depending on the presence or absence of a fragment on the X and/or the Y. They are detected by separately analysing male and female progenies of a single cross. Five markers were found to be located on both chromosomes. A few recombinants were observed for marker pairs of this class in the male progenies. Two completely linked markers located on the Y chromosome in the male parent show a recombination rate of r = 0.25 with sex. Recombination must have occurred between the sex chromosomes in the male parent. The recombination analysis led to the conclusion that there is a pseudoautosomal region (PAR) on the sex chromosomes, allowing recombination between the X and the Y chromosome. The other regions of the sex chromosomes show only a few recombination events, for the Y as well as for the X. These results are discussed in comparison to other dioecious plants.  相似文献   

15.
Two different types of sex chromosomes, XX/XY and ZZ/ZW, exist in the Japanese frog Rana rugosa. They are separated in two local forms that share a common origin in hybridization between the other two forms (West Japan and Kanto) with male heterogametic sex determination and homomorphic sex chromosomes. In this study, to find out how the different types of sex chromosomes differentiated, particularly the evolutionary reason for the heterogametic sex change from male to female, we performed artificial crossings between the West Japan and Kanto forms and mitochondrial 12S rRNA gene sequence analysis. The crossing results showed male bias using mother frogs with West Japan cytoplasm and female bias using those with Kanto cytoplasm. The mitochondrial genes of ZZ/ZW and XX/XY forms, respectively, were similar in sequence to those of the West Japan and Kanto forms. These results suggest that in the primary ZZ/ZW form, the West Japan strain was maternal and thus male bias was caused by the introgression of the Kanto strain while in the primary XX/XY form and vice versa. We therefore hypothesize that sex ratio bias according to the maternal origin of the hybrid population was a trigger for the sex chromosome differentiation and the change of heterogametic sex.  相似文献   

16.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

17.
Dioecious white campion Silene latifolia has sex chromosomal sex determination, with homogametic (XX) females and heterogametic (XY) males. This species has become popular in studies of sex chromosome evolution. However, the lack of genes isolated from the X and Y chromosomes of this species is a major obstacle for such studies. Here, I report the isolation of a new sex-linked gene, Slss, with strong homology to spermidine synthase genes of other species. The new gene has homologous intact copies on the X and Y chromosomes (SlssX and SlssY, respectively). Synonymous divergence between the SlssX and SlssY genes is 4.7%, and nonsynonymous divergence is 1.4%. Isolation of a homologous gene from nondioecious S. vulgaris provided a root to the gene tree and allowed the estimation of the silent and replacement substitution rates along the SlssX and SlssY lineages. Interestingly, the Y-linked gene has higher synonymous and nonsynonymous substitution rates. The elevated synonymous rate in the SlssY gene, compared with SlssX, confirms our previous suggestion that the S. latifolia Y chromosome has a higher mutation rate, compared with the X chromosome. When differences in silent substitution rate are taken into account, the Y-linked gene still demonstrates significantly faster accumulation of nonsynonymous substitutions, which is consistent with the theoretical prediction of relaxed purifying selection in Y-linked genes, leading to the accumulation of nonsynonymous substitutions and genetic degeneration of the Y-linked genes.  相似文献   

18.
Despite the fact that spontaneous tetraploidy is a rare phenomenon in mice, such embryos may be produced experimentally by a variety of means, though only a very limited degree of postimplantation development has been achieved. Despite this apparent limitation, much data on the rate of development of preimplantation tetraploid embryos has been published. However, the findings from these studies has often been conflicting. In the light of the recent successful achievement of advanced postimplantation tetraploid development in our laboratory, we decided it was an opportune time to re-evaluate the preimplantation development of these embryos in as near to optimal conditions as we could achieve. Three groups were studied, namely 1) control (diploid) embryos developing in vivo, 2) control (diploid) embryos that had been isolated at the 2-cell stage, briefly retained in culture, then transferred to the oviducts of pseudopregnant recipients, and 3) tetraploid embryos produced by electrofusion of blastomeres at the 2-cell stage, then transferred to the oviducts of pseudopregnant recipients. Embryos were isolated from females from each group at specific times after the HCG injection to induce ovulation. The total cell number of each embryo was established and the log mean values were plotted against time. From the gradients of the lines it was possible to establish that there was a significant difference between the cell doubling time of the transferred controls (group 2) compared to the in vivo controls (group 1) with cell doubling times of 15.86 +/- 1.45 h and 10.27 +/- 0.24 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The aim of this study was to evaluate the possible effect of non-specific acute inflammation localized outside the reproductive tract on the quality of preimplantation embryos. In fertilized female mice two experimental models of inflammation were used—trinitrobenzene sulfonic acid colitis and carrageenan paw oedema. Inflammation was induced during the cleavage period of embryo development and embryos were collected at 92 h post hormonal synchronization. Stereomicroscopical evaluation of in vivo derived embryos showed that the presence of inflammation in the maternal body did not affect their basic developmental abilities, i.e. there were no significant differences in the proportion of early blastocysts, morulas, slowly developing embryos and degenerates between embryonic pools obtained from mothers with induced inflammation and control mothers. In the next step, non-degenerated embryos from all mothers were cultured in vitro under standard conditions for another 24 h, and the average cell number (fluorescence DNA staining) and the incidence of cell death (fluorescence viability staining combined with TUNEL assay) were evaluated. The majority of cultured embryos reached expanded blastocyst stage. There were no significant differences in the average cell numbers of blastocysts, but blastocysts derived from mothers with induced inflammation showed a significantly higher incidence of dead cells in both experiments. The majority of dead cells were of apoptotic origin. These results show that non-specific inflammation localized outside the reproductive tract has no detrimental effect on the preimplantation embryo growth; however it can affect the embryo quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号