首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
5.
Yamamoto D  Usui-Aoki K  Shima S 《Genetica》2004,120(1-3):267-272
Sex-specific behavioral patterns must be a result of sexual differences in the structure and/or function of the central nervous system (CNS). Male Drosophila melanogaster mutants for the fruitless (fru) locus exhibit enhanced male-to-male courtship. The fru mutant males are accompanied by malformation of the male-specific muscle of Lawrence (MOL), which, in wild-type males, is induced by male motoneurons innervating it. These two phenotypes are the consequences of impaired sex determination of CNS neurons. In D. melanogaster, although the fru mRNAs are transcribed in the CNS of both the male and female, the Fru protein is only translated in the male CNS. This male-specific translation of Fru was also observed in D. simulans, D. yakuba, D. pseudoobscura and D. virilis; however, in D. suzukii, the Fru protein expression was detected even in the female CNS.  相似文献   

6.
7.
The fruitless mutants fru(3) and fru(4) were assessed for sex-specific reproductive-behavioral phenotypes and compared to the previously reported fru mutants. Among the several behavioral anomalies exhibited by males expressing these relatively new mutations, some are unique. fru(3) and fru(4) males are less stimulated to court females than fru(1) and fru(2). No courtship pulse song is generated by either fru(3) or fru(4) males, even though they perform brief wing extensions. fru(3) and fru(4) males display significantly less chaining behavior than do fru(1) males. The hierarchy of courtship responses by fru males directed toward females vs. males, when presented with both sexes simultaneously, is that fru(1) males perform vigorous and indiscriminant courtship directed at either sex; fru(4) males are similarly indiscriminant, but courtship levels were lower than fru(1); fru(2) males prefer females; fru(3) males show a courtship bias toward males. fru(3) and fru(4) males essentially lack the Muscle of Lawrence (MOL). On several reproductive criteria, there was no difference between fru-variant females and fru(+). The increases in phenotypic severity measured for the new mutants are discussed in the context of the emerging molecular genetics of fru and with regard to the gene's position within the sex-determination pathway.  相似文献   

8.
Mutations in the Drosophila retained/dead ringer (retn) gene lead to female behavioral defects and alter a limited set of neurons in the CNS. retn is implicated as a major repressor of male courtship behavior in the absence of the fruitless (fru) male protein. retn females show fru-independent male-like courtship of males and females, and are highly resistant to courtship by males. Males mutant for retn court with normal parameters, although feminization of retn cells in males induces bisexuality. Alternatively spliced RNAs appear in the larval and pupal CNS, but none shows sex specificity. Post-embryonically, retn RNAs are expressed in a limited set of neurons in the CNS and eyes. Neural defects of retn mutant cells include mushroom body beta-lobe fusion and pathfinding errors by photoreceptor and subesophageal neurons. We posit that some of these retn-expressing cells function to repress a male behavioral pathway activated by fruM.  相似文献   

9.
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10-13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (Fru(M)), we show a critical requirement for the male isoform of dsx (Dsx(M)), alongside Fru(M), in the specification of courtship song. Therefore, although Fru(M) expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without Dsx(M), the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.  相似文献   

10.
Li Y  Hoxha V  Lama C  Dinh BH  Vo CN  Dauwalder B 《PloS one》2011,6(11):e28269
Male courtship behavior in Drosophila melanogaster is controlled by two main regulators, fruitless (fru) and doublesex (dsx). Their sex-specific expression in brain neurons has been characterized in detail, but little is known about the downstream targets of the sex-specific FRU and DSX proteins and how they specify the function of these neurons. While sexual dimorphism in the number and connections of fru and dsx expressing neurons has been observed, a majority of the neurons that express the two regulators are present in both sexes. This poses the question which molecules define the sex-specific function of these neurons. Signaling molecules are likely to play a significant role. We have identified a predicted G-protein coupled receptor (GPCR), CG4395, that is required for male courtship behavior. The courtship defect in the mutants can be rescued by expression of the wildtype protein in fru neurons of adult males. The GPCR is expressed in a subset of fru-positive antennal glomeruli that have previously been shown to be essential for male courtship. Expression of 4395-RNAi in GH146 projection neurons lowers courtship. This suggests that signaling through the CG4395 GPCR in this subset of fru neurons is critical for male courtship behavior.  相似文献   

11.
In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control.  相似文献   

12.
A genetically defined element of the fruitless (fru) locus in Drosophila melanogaster regulates the development of a male-specific muscle spanning the fifth abdominal segment in adult males, the 'muscle of Lawrence' (MOL). The region is defined by two cytological deletions, each with a breakpoint that co-maps with previously described mutant courtship phenotypes at cytogenetic interval 91B on the third chromosome. Flies that carry both of these deletions are viable, and males express abnormalities of courtship similar to those caused by the fru inversion breakpoint at 91B. In addition, these double-deletion males show the complete absence of the MOL, suggesting that they have little or no gene expression of a postulated MOL determinant; the musculature in the fifth abdominal segment of these mutants to indistinguishable from that of a normal female. Other mutant combinations that produce fruitless courtship phenotypes--including deletion and inversion breakpoints, and a marked transposon inserted at 91B--produce intermediate forms of the MOL. A new genetic variant, induced by imprecise excision of the marked transposon, is homozygous lethal and disrupts fru functions related to courtship and the MOL. The MOL is shown to be dispensable for fertility and is therefore not the causative factor of fru-induced behavioral sterility. These genetic variants and their phenotypic results are discussed with regard to a model for the organization of the fru locus.  相似文献   

13.
D. A. Gailey  J. C. Hall 《Genetics》1989,121(4):773-785
The fruitless (fru) courtship mutant was dissected into three defects of male reproductive behavior, which were separable as to their genetic etiologies by application of existing and newly induced chromosomal aberrations. fru itself is a small inversion [In(3R) 90C; 91B] on genetic and cytological criteria. Uncovering the fru distal breakpoint with deletions usually led to males with two of the fru courtship abnormalities: no copulation attempts with females (hence, behavioral sterility) and vigorous courtship among males, including the formation of "courtship chains." However, certain genetic changes involving region 91B resulted in males who formed courtship chains but who mated with females. Uncovering the fru proximal breakpoint led to males that passively elicit inappropriately high levels of courtship. This elicitation property was separable genetically from the sterility and chain formation phenotypes and provisionally mapped to the interval 89F-90F, which includes the fru proximal breakpoint. Behavioral sterility and chaining were also observed in males expressing certain abnormal genotypes, independent of the fru inversion. These included combinations of deficiencies, each with a breakpoint in 91B, and a transposon inserted in 91B.  相似文献   

14.
The fru4 allele of the sex determination gene fruitless is induced by insertion of a P[lacZ,ry+] enhancer trap element. This insert also acts to disrupt expression of the fru P1 promoter derived male-specific proteins, consequently impairing male courtship behavior. fru4 maps less than 2 kb upstream of the fru P3 promoter, whose function is essential for viability. We replaced this insert with a GAL4 element, P[GAL4,w+], recovering two lines with insertions in opposite orientations at the locus, one of which demonstrated fru-specific mutant phenotypes. Reporter expression of these lines recapitulated that of P3- and P4-derived proteins which, when correlated with a developmental and tissue specific survey of fru promoters' activities, uncovered a previously unsuspected complexity of fru regulation. These novel fru alleles provide the tools for manipulation of fru-expressing cells, allowing the consequent effects to be related back to specific fru functions and the regulatory units controlling these activities.  相似文献   

15.
16.
17.
18.
19.
Several features of male reproductive behavior are under the neural control of fruitless (fru) in Drosophila melanogaster. This gene is known to influence courtship steps prior to mating, due to the absence of attempted copulation in the behavioral repertoire of most types of fru-mutant males. However, certain combinations of fru mutations allow for fertility. By analyzing such matings and their consequences, we uncovered two striking defects: mating times up to four times the normal average duration of copulation; and frequent infertility, regardless of the time of mating by a given transheterozygous fru-mutant male. The lengthened copulation times may be connected with fru-induced defects in the formation of a male-specific abdominal muscle. Production of sperm and certain seminal fluid proteins are normal in these fru mutants. However, analysis of postmating qualities of females that copulated with transheterozygous mutants strongly implied defects in the ability of these males to transfer sperm and seminal fluids. Such abnormalities may be associated with certain serotonergic neurons in the abdominal ganglion in which production of 5HT is regulated by fru. These cells send processes to contractile muscles of the male's internal sex organs; such projection patterns are aberrant in the semifertile fru mutants. Therefore, the reproductive functions regulated by fruitless are expanded in their scope, encompassing not only the earliest stages of courtship behavior along with almost all subsequent steps in the behavioral sequence, but also more than one component of the culminating events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号