首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

2.
We investigated the inter-relationships of superoxide (O2-) release, membrane depolarization and an increase in cytoplasmic free Ca2+, [Ca2+]i, in human granulocytes stimulated by various agonists. When concanavalin A or the Ca2+ ionophore ionomycin was used as stimulus, an increase in [Ca2+]i clearly preceded the onset of membrane depolarization, which was followed by O2- release. On the other hand, when N-formylmethionylleucylphenylalanine or wheat-germ agglutinin was used as stimulus, no demonstrable lag was seen in any of the responses. O2- release and membrane depolarization stimulated by all these agonists were markedly potentiated in parallel by pretreatment of cells with a low concentration of phorbol myristate acetate (0.25 ng/ml), whereas an increase in [Ca2+]i was not affected or minimally potentiated. The lag time between addition of the stimulus (concanavalin A or ionomycin) and onset of membrane depolarization or O2- release was significantly reduced by pretreatment of cells with phorbol myristate acetate, whereas the lag time between addition of concanavalin A and onset of the increase in [Ca2+]i was not affected. The dose-response curves for triggering of O2- release and membrane depolarization by each of receptor-mediated agonists in phorbol myristate acetate-pretreated or control cells were identical. These findings suggest that; (a) an increase in [Ca2+]i stimulates membrane depolarization indirectly; (b) a low concentration of phorbol myristate acetate potentiates membrane depolarization and O2- release by acting primarily at the post-receptor level, in particular, at the level distal to an increase in [Ca2+]i, but not by augmenting an increase in [Ca2+]i; and (c) the system provoking membrane depolarization and the system activating NADPH oxidase share a common pathway, which may be susceptible to a low concentration of phorbol myristate acetate.  相似文献   

3.
Accumulation of inositol phosphates (Ins-Ps, revealed by high performance liquid chromatography), changes of the cytosolic free Ca2+ [( Ca2+]i, revealed by fura-2), membrane potential and ionic currents (revealed by bis-oxonol and patch clamping) were investigated in PC12 cells treated with bradykinin (BK). The phenomena observed were (a) due to the activation of a B2 receptor (inhibitor studies) and (b) unaffected by pertussis toxin, cAMP analogs, and inhibitors of either cyclooxygenase or voltage-gated Ca2+ channels. During the initial tens of s, three interconnected events predominated: accumulation of Ins-1,4,5-P3, Ca2+ release from intracellular stores and hyperpolarization due to the opening of Ca2+-activated K+ channels. Phorbol myristate acetate partially inhibited Ins-1,4,5-P3 accumulation at all [BK] investigated, and the [Ca2+]i increase at [BK] less than 50 nM. In PC12 cells treated with maximal [BK] in the Ca2+-containing incubation medium, Ins-1,4,5-P3 peaked at 10 s, dropped to 20% of the peak at 30 s, and returned to basal within 5 min; the peak increase of Ins-1,3,4-P3 was slower and was variable from experiment to experiment, while Ins-P4 rose for 2 min, and remained elevated for many min thereafter. Meanwhile, influx of Ca2+ from the extracellular medium, plasma membrane depolarization (visible without delay when hyperpolarization was blocked), and increased plasma membrane conductance were noticed. Evidence is presented that these last three events (which were partially inhibited by phorbol myristate acetate at all [BK]) were due to the activation of a cation influx, which was much more persistent than the elevation of the two Ins-P3 isomers. Our results appear inconsistent with the possibility that in intact PC12 cells the BK-induced activation of cation influx is accounted for entirely by the increases of either Ins-1,3,4-P3 or Ins-1,4,5-P3 (alone or in combination with Ins-1,3,4,5-P4), as previously suggested by microinjection studies in different cell types.  相似文献   

4.
Cytosolic Ca2+ levels and arachidonate liberation were investigated in platelets loaded with the fluorescent Ca2+ indicator dye fura-2, and labelled with [3H]arachidonate. Fura-2 was used in preference to quin2 because the latter interfered with [3H]arachidonate labelling of phospholipids. From a resting free Ca2+ level of around 100 nM, ionomycin (10-200 nM) evoked an instantaneous, concentration-dependent increase in cytosolic Ca2+ that only resulted in [3H]arachidonate liberation (up to 4-fold over control) at Ca2+ levels greater than 1 microM. Addition of collagen (10 micrograms/ml) evoked an elevation in Ca2+ up to 461 +/- 133 nM. These changes in Ca2+ were accompanied by a 2-4-fold elevation in [3H]arachidonate with depletion of [3H]phosphatidylcholine by 17 +/- 4% and [3H]phosphatidylinositol by 41 +/- 7%. Indomethacin (10 microM) reduced the elevation in Ca2+ by collagen to 115 +/- 18 nM but did not significantly inhibit the 2-4-fold increase in [3H]arachidonate. [3H]Phosphatidylcholine and [3H]phosphatidylinositol were decreased by 9 +/- 7% and 10 +/- 6%, respectively, with collagen in the presence of indomethacin. Stimulation of phosphoinositide turnover by collagen in the presence and absence of indomethacin was indicated by [32P]phosphatidate formation in cells prelabelled with [32P]Pi. This phosphatidate formation was decreased (75%) by the presence of indomethacin. In the presence of indomethacin, phorbol myristate acetate (20 nM) alone or in combination with ionomycin (30 nM) failed to stimulate arachidonate liberation despite a marked stimulation of aggregation. These results indicate that, whereas ionomycin requires Ca2+ in the microM range for arachidonate liberation, collagen, notably in the presence of indomethacin, does so at basal Ca2+ levels. The mechanisms underlying the regulation of arachidonate release by collagen are not clear, but do not appear to involve activation of protein kinase C, or an elevation of cytosolic free Ca2+.  相似文献   

5.
Production of platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3- phosphocholine (PAF), a potent mediator of inflammation, by mononuclear phagocytes varies with their stage of cellular differentiation and the nature of the eliciting stimulus. The human monocytic cell line U937 can be induced to differentiate to a macrophage-like cell following phorbol myristate acetate exposure, and after differentiation, these cells efficiently support replication of respiratory syncytial virus (RSV). U937 cells induced to differentiate with phorbol myristate acetate demonstrated a time-dependent decrease in PAF synthesis. RSV infection of these differentiated U937 cells caused a sustained stimulation of PAF synthesis that paralleled viral replication and was dependent on infectious virus. Virus increased the activity of lyso-PAF:acetyl-CoA acetyl-transferase (PAF acetyltransferase) in cell lysates, thus enhancing the anabolic pathway of PAF synthesis without altering the activity of PAF acetylhydrolase, which regulates PAF catabolism. RSV infection of human monocytes also caused a marked increase in [3H] monocytes also caused to uninfected monocytes. Thus, virus infection serves as a novel stimulus to induce PAF synthesis in human mononuclear phagocytes and suggests that increased PAF production may have a critical role in the inflammatory response to RSV.  相似文献   

6.
The protein kinase C inhibitor staurosporine influenced in different ways the functions of human neutrophils. Staurosporine prevented the enhanced protein phosphorylation in phorbol ester- and N-formylmethyionyl-leucylphenylalanine (fMLP)-stimulated cells, and was a powerful inhibitor of the respiratory burst induced by phorbol myristate acetate [IC50 (concentration causing 50% inhibition) 17 nM] and the chemotactic peptides fMLP and C5a (IC50 24 nM). It did not alter, however, the superoxide production by cell-free preparations of NADPH oxidase. Staurosporine had no effect on agonist-dependent changes in cytosolic free Ca2+ and exocytosis of specific and azurophil granules, and showed only a slight inhibition of the release of vitamin B12-binding protein induced by phorbol myristate acetate (decreased by 40% at 200 nM). On the other hand, staurosporine also exhibited neutrophil-activating properties: it induced the release of gelatinase (from secretory vesicles) and vitamin-B12-binding protein (from specific granules). These effects were protracted, concentration-dependent, insensitive to Ca2+ depletion, and strongly enhanced by cytochalasin B. Staurosporine, however, did not induce the release of beta-glucuronidase or elastase (from azurophil granules). Except for the sensitivity to cytochalasin B, these properties suggest a similarity between the exocytosis-inducing actions of staurosporine and PMA. The results obtained with staurosporine provide further evidence that different signal-transduction processes are involved in neutrophil activation, and suggest that protein phosphorylation is required for the induction of the respiratory burst, but not for exocytosis.  相似文献   

7.
rac-1-O-Myristoyl-2-O-acetylglycerol, rac-1-O-palmitoyl-2-O-acetylglycerol, and rac-1-O-oleoyl-2-O-acetylglycerol acted like phorbol myristate acetate and mezerein in stimulating human neutrophil aggregation. Responses to these agents were equally influenced by cytochalasin B, extracellular calcium and magnesium, arachidonate antimetabolites, and procedures that rendered the cells desensitized to other agonists. The compounds also inhibited the binding of [3H]-phorbol myristate acetate to its receptor on neutrophils. Thus, these agents are biologically homologous. They act by binding to a common receptor. This receptor may function physiologically as a transducer for endogenous glycerides that form in cells challenged by other stimuli.  相似文献   

8.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

9.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

10.
The effects of 17-hydroxywortmannin (HWT), a powerful inhibitor of the respiratory burst associated with phagocytosis (Baggiolini, M., Dewald, B., Schnyder, J., Ruch, W., Cooper, P. H., and Payne, T. G. (1987) Exp. Cell Res. 169, 408-418), were studied in human neutrophils stimulated with chemotactic agonists or phorbol myristate acetate. At nanomolar concentrations HWT inhibited superoxide production and the release of granule contents induced by N-formyl-Met-Leu-Phe, C5a, platelet-activating factor, and leukotriene B4, but not by phorbol myristate acetate, indicating that it interferes with receptor-mediated activation of the neutrophils, without directly affecting protein kinase C (Ca2+/phospholipid-dependent enzyme), the NADPH-oxidase, or the process of granule exocytosis. Moreover, HWT did not influence agonist-induced [Ca2+]i changes, indicating that it does not interfere with the function of agonist receptors, G-proteins or the phosphatidylinositol-specific phospholipase C. By studying the effect of HWT on the respiratory burst elicited in normal and Ca2+-depleted cells by combined stimulation with N-formyl-Met-Leu-Phe and phorbol myristate acetate, evidence was obtained that two transduction sequences, both of which are G-protein-dependent, are necessary for the induction of the response by receptor agonists. One sequence is Ca2+-dependent, HWT-insensitive, and leads to activation of protein kinase C, the other is Ca2+-independent and HWT-sensitive. Ca2+ depletion, which blocks the first, and HWT, which blocks the second, can be used to show that both processes must be functional for the transduction of agonist signals into a respiratory burst response.  相似文献   

11.
Exposure to antigen (Ag) caused a biphasic 1,2-diacylglycerol (DG) production in [3H]myristic acid-labeled RBL-2H3 cells; the early, small transient phase and the second large sustained phase. The accumulation of phosphatidic acid (PA) or phosphatidylethanol (PEt) in the presence of ethanol was paralleled by the second-phase DG generation. Ag-induced formation of phosphocholine and choline in [3H]choline-labeled cells suggested the hydrolysis of phosphatidylcholine (PC) by phospholipases C and D. Treatment with phorbol myristate (PMA) or A23187 caused increases in [3H]DG and water-soluble [3H]choline metabolites. In protein kinase C (PKC) down-regulated cells, PEt formation was markedly reduced. In these cells DG production induced by Ag and A23187 was largely suppressed, thus indicating that PKC would play an important regulatory role for PC hydrolysis. However, because the A23187 treatment showed significant accumulation of water-soluble choline metabolites in PKC down-regulated cells, an increase in intracellular Ca2+ is another factor regulating PC hydrolysis. Taken together, these results may indicate that PC hydrolysis in response to Ag is dependent on PKC and Ca2+.  相似文献   

12.
It is widely believed that the transduction pathway in the activation of the NADPH oxidase by formyl-methionyl-leucyl-phenylalanine (FMLP) in neutrophils involves the stimulation of phosphoinositide hydrolysis, the increase in [Ca2+]i and the activity of the Ca2+ and phospholipid dependent protein kinase C. The results presented here show that the activation of the respiratory burst by FMLP can be dissociated by the stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and Ca2+ changes. In fact, in neutrophils pretreated (primed) with non stimulatory doses of phorbol myristate acetate the respiratory burst by chemotactic peptide is greatly potentiated while the increase in [3H] inositol phosphates formation and in [Ca2+]i are depressed due to the inhibition of phospholipase C. This finding indicates that FMLP can trigger also a sequence of transduction reactions for the activation of the NADPH oxidase different from that involving the formation of the second messengers diacylglycerol and inositol phosphates and the increase in free Ca2+ concentration.  相似文献   

13.
Binding of antigen to IgE-receptor complexes on the surface of RBL-2H3 rat basophilic leukemia cells is the first event leading to the release of cellular serotonin, histamine, and other mediators of allergic, asthmatic, and inflammatory responses. We have used dinitrophenol-conjugated bovine serum albumin (DNP-BSA) as well as the fluorescent antigen, DNP-B-phycoerythrin, and the electron-dense antigen, DNP-BSA-gold, to investigate dynamic membrane and cytoskeletal events associated with the release of [3H]serotonin from anti-DNP-IgE-primed RBL-2H3 cells. These multivalent antigens bind rapidly to cell surface IgE-receptor complexes. Their distribution is initially uniform, but within 2 min DNP-BSA-gold is found in coated pits and is subsequently internalized. Antigen internalization occurs in the presence and absence of extracellular Ca2+. The F-actin content of the detergent-extracted cell matrices analyzed by SDS PAGE decreases during the first 10-30 s of antigen binding and then increases by 1 min to almost double the control levels. A rapid and sustained increase is also observed when total F-actin is quantified by flow cytometry after binding of rhodamine-phalloidin. The antigen-stimulated increase in F-actin coincides with (and may cause) the transformation of the cell surface from a finely microvillous to a highly folded or plicated topography. Other early membrane responses include increased cell spreading and a 2-3-fold increase in the uptake of fluorescein-dextran by fluid pinocytosis. The surface and F-actin changes show the same dependence on DNP-protein concentration as stimulated [3H]serotonin release; and both the membrane responses and the release of mediators are terminated by the addition of the non-cross-linking monovalent ligand, DNP-lysine. These data indicate that the same antigen-stimulated transduction pathway controls both the membrane/cytoskeletal and secretory events. However, the membrane and actin responses to IgE-receptor cross-linking are independent of extracellular Ca2+ and are mimicked by phorbol myristate acetate, whereas ligand-dependent mediator release depends on extracellular Ca2+ and is mimicked by the Ca2+ ionophore A23187.  相似文献   

14.
Both epidermal growth factor (EGF) and vanadate can activate 45Ca2+ influx into A431 epidermal carcinoma cells, without a detectable lag period possibly via a voltage-independent calcium channel. 22Na+/H+ exchange and 45Ca2+ uptake are mutually independent. Neither EGF nor vanadate induce any significant change in the steady-state levels of [1,3-3H]glycerol-labeled diacylglycerol, myo-[2-3H]inositol-labeled inositol trisphosphate or in 32P-labeled polyphosphoinositides or phosphatidic acid over the first 10 min of treatment, suggesting that the EGF receptor is not directly coupled to phosphatidylinositol turnover and that the two ion fluxes are not induced via a kinase C-dependent pathway. An increase in turnover of polyphosphoinositides can be detected in EGF-stimulated cells by nonequilibrium labeling with [32P]phosphate, but the increase shows a lag of about 1 min under the conditions used to detect 45Ca2+ influx. Chelation of free Ca2+ decreases but does not abolish the EGF-stimulated turnover. Preincubation with tetradecanoylphorbol acetate or 1-oleoyl-2-acetylglycerol inhibits the increase in 45Ca2+ uptake by both EGF and vanadate. Tetradecanoylphorbol acetate alone does not alter the basal rate of influx when added together with 45Ca2+. Surprisingly, the activation by vanadate and its inhibition by phorbol 12-myristate 13-acetate are unaffected by down-regulation of the EGF receptors through prior incubation with growth factor. Therefore, in A431 cells the activation of Na+/H+ exchange and Ca2+ influx appear to be independent of phosphatidylinositol turnover, and the EGF receptor does not itself function as a Ca2+ channel. Vanadate apparently activates influx through a mechanism distinct from or distal to the EGF receptor.  相似文献   

15.
PC12 cells preloaded with [3H]norepinephrine release this neurotransmitter at a slow rate (basal release). This rate is increased by the addition of phorbol myristate acetate (PMA), but not by a biologically inactive phorbol ester. This effect most likely is mediated by protein kinase C, since desensitization of this kinase abolished the stimulation of the neurotransmitter release by PMA. Unexpectedly, clinical concentrations of the volatile anesthetics halothane, enflurane, isoflurane and methoxyflurane stimulated the PMA evoked neurotransmitter release in good correlation with their anesthetic potency. Since the volatile anesthetics increased the cytoplasmic Ca2+ concentration of the PC12 cells in a dose dependent manner it seems very likely that the effect of the anesthetics on the PMA-evoked neurotransmitter release is mediated by this rise in Ca2+ concentration.  相似文献   

16.
Preincubation of Fura 2-loaded rat myometrial cells with H-8, an inhibitor of protein kinase A, for 1 h reversed the inhibitory effects of 8-(4-chlorophenylthio)-cAMP (CPTcAMP) on the oxytocin-stimulated increase in (Ca2+)i (intracellular free calcium), with an EC50 of 47 microM. H-8 also prevented the inhibition by relaxin and isoproterenol of the oxytocin-induced increase in (Ca2+)i. The EC50 of H-8 in reversing the relaxin effect was 42 microM. H-8 reversal of the effect of relaxin on (Ca2+)i was evident both in the absence of extracellular calcium and in cells pretreated with pertussis toxin. H-8 also reversed the inhibitory effects of relaxin and CPTcAMP on the oxytocin-induced increase in [3H]inositol phosphate formation and [3H]phosphoinositide hydrolysis. Preincubation of myometrial cells for 1 h with H-7, another protein kinase inhibitor, only partially attenuated the inhibition by relaxin and CPTcAMP of the oxytocin-induced increase in (Ca2+)i and [3H]inositol phosphate formation at concentrations 4-5 times greater than those of H-8. Acute (15-min) exposure to phorbol myristate acetate (1.0 microM) did not affect basal (Ca2+)i or the oxytocin-stimulated increases in (Ca2+)i or inositol phosphate formation. These results imply a regulatory role for protein kinase A in the inhibition of the oxytocin-induced increase in (Ca2+)i and inositol phosphate formation by relaxants.  相似文献   

17.
A peptide mitogen bombesin, which activates the phospholipase C-protein kinase C signaling pathway, induces a mepacrine-sensitive, dose-dependent increase in the release of [3H]arachidonic acid and its metabolites ([3H]AA) from prelabeled Swiss 3T3 fibroblasts. The effect is temporally composed of two phases, i.e. an initial transient burst that is essentially independent of extracellular Ca2+, and a following sustained phase that is absolutely dependent on the extracellular Ca2+. The initial transient [3H]AA liberation occurs concomitantly with bombesin-induced 45Ca efflux from prelabeled cells: both responses being substantially attenuated by loading cells with a Ca2+ chelator quin2. However, bombesin-induced intracellular Ca2+ mobilization by itself is not sufficient as a signal for the initial transient [3H]AA liberation, since A23187 potently stimulates 45Ca efflux to an extent comparable to bombesin but fails to induce [3H]AA release in the absence of extracellular Ca2+. The second sustained phase of the bombesin-induced [3H]AA release is abolished by reducing extracellular Ca2+ to 0.03 mM, although bombesin effects on phospholipase C and protein kinase C activation are barely affected by the same procedure. A protein kinase C activator phorbol 12,13-dibutyrate induces an extracellular Ca(2+)-dependent, slowly developing sustained increase in [3H]AA release, and markedly potentiates both phases of bombesin-induced [3H]AA release. Down-regulation of cellular protein kinase C completely abolishes all of the effects of phorbol dibutyrate, and partially inhibits the second but not the first phase of bombesin-induced [3H]AA release. These results indicate that bombesin-induced receptor-mediated activation of phospholipase A2 involves multiple mechanisms, including intracellular Ca2+ mobilization for the first phase, protein kinase C activation plus Ca2+ influx for the second phase, and as yet unknown mechanism(s) independent of intracellular Ca2+ mobilization or protein kinase C for both of the phases.  相似文献   

18.
Effects of cadmium on lymphocyte activation   总被引:2,自引:0,他引:2  
The effects of cadmium (Cd) on phytohemoagglutinin or phorbol myristate acetate-induced lymphocyte activation were investigated and a dose-dependent inhibition of cell proliferation was found. Kinetic studies revealed that the Cd-sensitive step is an early event of T cell stimulation. Failure of IL2 secretion and reduction of IL2 receptor expression in the Cd-treated cells are also reported. Regardless of which mechanism is responsible for Cd effects, our studies show that the inhibition of lymphocyte activation is associated with reduced [3H]phorbol dibutyrate binding to Ca2+-phospholipid-dependent protein kinase and altered breakdown of phosphatidylinositols. Thus, Cd interferes with two biochemical events which play a critical role in lymphocyte signal transduction and activation.  相似文献   

19.
S Roy  B L Ge  S Ramakrishnan  N M Lee  H H Loh 《FEBS letters》1991,287(1-2):93-96
Mouse thymocytes incubated in vitro with increasing concentrations of interleukin-1 (IL-1) in the presence of phytohemagglutinin (PHA) exhibited a dose-dependent increase in cell proliferation, as measured by [3H]thymidine incorporation. Under these conditions, there was a parallel dose-dependent increase in specific [3H]morphine binding, with a maximum increase of approximately 5-fold over basal levels. The binding sites differ from classical opioid receptors in that they are not stereo-selective. Interleukin-2 was ineffective in promoting either cell proliferation or enhanced opioid binding, but the effects of IL-1 could be mimicked by phorbol myristate acetate (PMA), suggesting the involvement of tyrosine phosphorylation. These results indicate that morphine-binding sites on immune cells can be regulated by cytokine activation.  相似文献   

20.
PsaF is a nuclear encoded gene for the subunit III of photosystem I. It is located at the lumenal side of the thylakoid membrane and interacts with plastocyanin. Starting from a low-level expression in the cotyledons of etiolated seedlings the gene is upregulated by light. Light can be replaced by Ca2+ or phosphoinositides like phorbol myristate acetate, an analogue of diacylglycerol. We tested the effects of these components on PsaF promoter-driven gene expression in roots and found that the PsaF promoter includes a positive regulatory region [-220/-179] activated by cytokinin and a negative regulatory region [-687/-221] activated by abscisic acid. In addition, the promoter is activated by Ca2+, mastoparan and phorbol myristate acetate which suggests a role for phospholipases and protein kinase C in PsaF gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号