首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.  相似文献   

2.
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and stimulates lattice assembly. Murine phosphatidylinositol 4-phosphate 5-kinase alpha (PI5KIalpha) has been shown to enhance endocytosis in a PIP2-dependent manner. We tested the hypothesis that PI5KIalpha-mediated PIP2 production would negatively regulate ENaC current by enhancing epsin-mediated endocytosis of the channel. Expression of PI5KIalpha decreased ENaC currents in Xenopus oocytes by 80%, entirely because of a decrease in cell surface ENaC levels. Catalytically inactive mutants of PI5Kalpha had no effect on ENaC activity. Expression of the PIP2 binding region of epsin increased ENaC current in oocytes, an effect completely reversed by co-expression of PI5KIalpha. Overexpression of epsin reduced amiloride-sensitive current in CCD cells. Overexpression of PI5KIalpha enhanced membrane PIP2 levels and reduced apical surface expression of ENaC in CCD cells, down-regulating amiloride-sensitive current. Knockdown of PI5KIalpha with isoform-specific siRNA resulted in a 4-fold enhancement of ENaC activity. PI5KIalpha localized exclusively to the apical plasma membrane domain when overexpressed in mouse CCD cells, consistent for a role in regulating PIP2 production at the apical plasma membrane. We conclude that membrane turnover events regulating ENaC surface expression and activity in oocytes and CCD cells can be regulated by PI5KIalpha.  相似文献   

3.
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a limiting step in sodium reabsorption across distal airway epithelium and controlling mucociliary clearance. ENaC is activated by serine proteases secreted in the extracellular milieu. In cystic fibrosis lungs, high concentrations of secreted neutrophil elastase (NE) are observed. hNE could activate ENaC and contribute to further decreased mucociliary clearance. The aims of this study were (i) to test the ability of an engineered human neutrophil elastase inhibitor (EPI-hNE4) to specifically inhibit the elastase activation of ENaC-mediated amiloride-sensitive currents (I(Na)) and (ii) to examine the effect of elastase on cell surface expression of ENaC and its cleavage pattern (exogenous proteolysis). Oocytes were exposed to hNE (10-100 microg/ml) and/or trypsin (10 microg/ml) for 2-5 min in the presence or absence of EPI-hNE4 (0.7 microm). hNE activated I(Na) 3.6-fold (p < 0.001) relative to non-treated hENaC-injected oocytes. EPI-hNE4 fully inhibited hNE-activated I(Na) but had no effect on trypsin- or prostasin-activated I(Na). The co-activation of I(Na) by hNE and trypsin was not additive. Biotinylation experiments revealed that cell surface gamma ENaC (but not alpha or beta ENaC) exposed to hNE for 2 min was cleaved (as a 67-kDa fragment) and correlated with increased I(Na). The elastase-induced exogenous proteolysis pattern is distinct from the endogenous proteolysis pattern induced upon preferential assembly, suggesting a causal relationship between gamma ENaC cleavage and ENaC activation, taking place at the plasma membrane.  相似文献   

4.
The epithelial Na+ channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.  相似文献   

5.
Proteases perform a diverse array of biological functions. From simple peptide digestion for nutrient absorption to complex signaling cascades, proteases are found in organisms from prokaryotes to humans. In the human airway, proteases are associated with the regulation of the airway surface liquid layer, tissue remodeling, host defense and pathogenic infection and inflammation. A number of proteases are released in the airways under both physiological and pathophysiological states by both the host and invading pathogens. In airway diseases such as cystic fibrosis, proteases have been shown to be associated with increased morbidity and airway disease progression. In this review, we focus on the regulation of proteases and discuss specifically those proteases found in human airways. Attention then shifts to the epithelial sodium channel (ENaC), which is regulated by proteolytic cleavage and that is considered to be an important component of cystic fibrosis disease. Finally, we discuss bacterial proteases, in particular, those of the most prevalent bacterial pathogen found in cystic fibrosis, Pseudomonas aeruginosa.  相似文献   

6.
The epithelial sodium channel (ENaC) is a key factor in the transepithelial movement of sodium, and consequently salt and water homeostasis in various organs. Dysregulated activity of ENaC is associated with human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, cystic fibrosis, pulmonary oedema or intestinal disorders. Therefore it is important to identify novel compounds that affect ENaC activity. This study investigated if garlic (Allium sativum) and its characteristic organosulfur compounds have impact on ENaCs. Human ENaCs were heterologously expressed in Xenopus oocytes and their activity was measured as transmembrane currents by the two-electrode voltage-clamp technique. The application of freshly prepared extract from 5g of fresh garlic (1% final concentration) decreased transmembrane currents of ENaC-expressing oocytes within 10 min. This effect was dose-dependent and irreversible. It was fully sensitive to the ENaC-inhibitor amiloride and was not apparent on native control oocytes. The effect of garlic was blocked by dithiothreitol and l-cysteine indicating involvement of thiol-reactive compounds. The garlic organosulsur compounds S-allylcysteine, alliin and diallyl sulfides had no effect on ENaC. By contrast, the thiol-reactive garlic compound allicin significantly inhibited ENaC to a similar extent as garlic extract. These data indicate that thiol-reactive compounds which are present in garlic inhibit ENaC.  相似文献   

7.

Background

The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na+-K+-ATPase.

Methods

Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection.

Results

The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains.

Conclusions

These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.  相似文献   

8.
Among the compensatory mechanisms restoring circulating blood volume after severe haemorrhage, increased vasopressin secretion enhances water permeability of distal nephron segments and stimulates Na+ reabsorption in cortical collecting tubules via epithelial sodium channels (ENaC). The ability of vasopressin to upregulate ENaC via a cAMP-dependent mechanism in the medium to long term is well established. This study addressed the acute regulatory effect of cAMP on human ENaC (hENaC) and thus the potential role of vasopressin in the initial compensatory responses to haemorrhagic shock. The effects of raising intracellular cAMP (using 5 mmol/L isobutylmethylxanthine (IBMX) and 50 μmol/L forskolin) on wild-type and Liddle-mutated hENaC activity expressed in Xenopus oocytes and hENaC localisation in oocyte membranes were evaluated by dual-electrode voltage clamping and immunohistochemistry, respectively. After 30 min, IBMX + forskolin had stimulated amiloride-sensitive Na+ current by 52 % and increased the membrane density of Na+ channels in oocytes expressing wild-type hENaC. These responses were prevented by 5 μmol/L brefeldin A, which blocks antegrade vesicular transport. By contrast, IBMX + forskolin had no effects in oocytes expressing Liddle-mutated hENaC. cAMP stimulated rapid, exocytotic recruitment of wild-type hENaC into Xenopus oocyte membranes, but had no effect on constitutively over-expressed Liddle-mutated hENaC. Extrapolating these findings to the early cAMP-mediated effect of vasopressin on cortical collecting tubule cells, they suggest that vasopressin rapidly mobilises ENaC to the apical membrane of cortical collecting tubule cells, but does not enhance ENaC activity once inserted into the membrane. We speculate that this stimulatory effect on Na+ reabsorption (and hence water absorption) may contribute to the early restoration of extracellular fluid volume following severe haemorrhage.  相似文献   

9.
MMP-2 (matrix metalloproteinase 2) contains a CBD (collagen-binding domain), which is essential for positioning gelatin substrate molecules relative to the catalytic site for cleavage. Deletion of the CBD or disruption of CBD-mediated gelatin binding inhibits gelatinolysis by MMP-2. To identify CBD-binding sites on type I collagen and collagen peptides with the capacity to compete CBD binding of gelatin and thereby inhibit gelatinolysis by MMP-2, we screened a one-bead one-peptide combinatorial peptide library with recombinant CBD as bait. Analyses of sequences from the CBD-binding peptides pointed to residues 715-721 in human alpha1(I) collagen chain as a binding site for CBD. A peptide (P713) including this collagen segment was synthesized for analyses. In SPR (surface plasmon resonance) assays, the CBD and MMP-2(E404A), a catalytically inactive MMP-2 mutant, both bound immobilized P713 in a concentration-dependent manner, but not a scrambled control peptide. Furthermore, P713 competed gelatin binding by the CBD and MMP-2(E404A). In control assays, neither of the non-collagen binding alkylated CBD or MMP-2 with deletion of CBD (MMP-2DeltaCBD) bound P713. Consistent with the exodomain functions of the CBD, P713 inhibited approximately 90% of the MMP-2 gelatin cleavage, but less than 20% of the MMP-2 activity on a peptide substrate (NFF-1) which does not require the CBD for cleavage. Confirming the specificity of the inhibition, P713 did not alter MMP-2DeltaCBD or MMP-8 activities. These experiments identified a CBD-binding site on type I collagen and demonstrated that a corresponding synthetic peptide can inhibit hydrolysis of type I and IV collagens by competing CBD-mediated gelatin binding to MMP-2.  相似文献   

10.
Vasopressin stimulates the activity of the epithelial Na channel (ENaC) through the cAMP/PKA pathway in the cortical collecting tubule, or in similar amphibian epithelia, but the mechanism of this regulation is not yet understood. This stimulation by cAMP could not be reproduced with the rat or Xenopus ENaC expressed in Xenopus oocyte. Recently, it was shown that the α-subunit cloned from the guinea-pig colon (αgp) could confer the ability to be activated by the membrane-permeant cAMP analogue 8-chlorophenyl-thio-cAMP (cpt-cAMP) to channels produced by expression of αgp, βrat and γrat ENaC subunits. In this study we investigate the mechanism of this activation. Forskolin treatment, endogenous production of cAMP by activation of coexpressed β adrenergic receptors, or intracellular perfusion with cAMP did not increase the amiloride-sensitive Na current, even though these maneuvers stimulated CFTR (cystic fibrosis transmembrane conductance regulator)-mediated Cl currents. In contrast, extracellular 8-cpt-cAMP increased αgp, βrat and γrat ENaC activity but had no effect on CFTR. Swapping intracellular domains between the cpt-cAMP-sensitive αgp and the cpt-cAMP-resistant αrat-subunit showed that neither the N-terminal nor the C-terminal of α ENaC was responsible for the effect of cpt-cAMP. The mechanisms of activation of ENaC by cpt-cAMP and of CFTR by the cAMP/PKA pathway are clearly different. cpt-cAMP seems to increase the activity of ENaC formed by αgp and βγrat by interacting with the extracellular part of the protein. Received: 19 January 2001/Revised: 27 April 2001  相似文献   

11.
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.  相似文献   

12.
Our previous report showed that rapid wound closure in Xenopus laevis embryos was associated with a decrease in the extracellular concentration of either Na(+) or Cl(-) ions. In this study, we examined the wound closure in Xenopus embryos when epithelial Na(+) channel (ENaC), Na(+)/K(+) ATPase (Na(+) pump) or CICs (members of Cl(-) channel) were blocked by each specific inhibitor. Blockage of ENaC and CIC restricted the rate of wound closure during the first 30 min PW and during the subsequent period, respectively. In contrast, inhibition of Na(+) pump had no effect on the rate of wound closure. Furthermore, simultaneous administration of both ENaC and CIC inhibitors resulted in the cumulative reduction of wound closure. Thus, it is plausible that these ion channels play active roles in wound closure in Xenopus embryos. NPPB is known to inhibit both CIC-2 and CIC-3. Immunohistochemical experiments showed that CIC-3, but not CIC-2, was expressed in Xenopus embryos, suggesting that the reduced wound closure by NPPB was due to blockage of CIC-3. A local enhancement of CIC-3 expression at the leading edge of the wounded epidermis was found to be specific to closing wounds that were kept in 10% NAM. An in vitro wounding assay also showed a pattern of CIC-3 expression at the margin of the scratch wound comparable to the results in vivo. These findings suggest that intracellular translocation of CIC-3 is involved in wound closure. We propose that the ion channels, including CIC-3, play a crucial role in wound closure in Xenopus embryos.  相似文献   

13.
The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin superfamily. ENaC is a heteromultimer containing three homologous subunits (α, β, and γ); however, the subunit stoichiometry is still controversial. Here, we addressed this issue using atomic force microscopy imaging of complexes between isolated ENaC and antibodies/Fab fragments directed against specific epitope tags on the α-, β- and γ-subunits. We show that for α-, β- and γ-ENaC alone, pairs of antibodies decorate the channel at an angle of 120°, indicating that the individual subunits assemble as homotrimers. A similar approach demonstrates that αβγ-ENaC assembles as a heterotrimer containing one copy of each subunit. Intriguingly, all four subunit combinations also produce higher-order structures containing two or three individual trimers. The trimer-of-trimers organization would account for earlier reports that ENaC contains eight to nine subunits.  相似文献   

14.
15.
The aim of this study was to determine whether hypo-osmolarity, which activates taurine transport through the volume-sensitive organic osmolyte channel in skate (Raja erinacea) erythrocytes, also activates the organic osmolyte channel activity of skate AE1 (skAE1) expressed in oocytes. When Xenopus laevis oocytes expressing skAE1 were incubated in hypo-osmotic ND 96 (210 mOsm) media, taurine was transported at a significantly higher rate than when incubated in ND 96 (235 mOsm), which is iso-osmotic to Xenopus plasma. Therefore, hypo-osmotic stress is part of the activation mechanism of the organic osmolyte channel in skAE1 expressing oocytes.  相似文献   

16.
17.
Expression of the epithelial sodium channel (ENaC) at the apical membrane of cortical collecting duct (CCD) principal cells is modulated by regulated trafficking mediated by vesicle insertion and retrieval. Small GTPases are known to facilitate vesicle trafficking, recycling, and membrane fusion events; however, little is known about the specific Rab family members that modify ENaC surface density. Using a mouse CCD cell line that endogenously expresses ENaC (mpkCCD), the channel was localized to both Rab11a- and Rab11b-positive endosomes by immunoisolation and confocal fluorescent microscopy. Expression of a dominant negative (DN) form of Rab11a or Rab11b significantly reduced the basal and cAMP-stimulated ENaC-dependent sodium (Na(+)) transport. The greatest reduction in Na(+) transport was observed with the expression of DN-Rab11b. Furthermore, small interfering RNA-mediated knockdown of each Rab11 isoform demonstrated the requirement for Rab11b in ENaC surface expression. These data indicate that Rab11b, and to a lesser extent Rab11a, is involved in establishing the constitutive and cAMP-stimulated Na(+) transport in mpkCCD cells.  相似文献   

18.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

19.
When swollen, skate red blood cells increase permeability and allow efflux of a number of solutes, including taurine. Hypoosmosis-induced taurine permeability appears to involve the red cell anion exchanger. However, three isoforms have been cloned from these cells. Therefore, to determine the ability of the individual isoform skate anion exchanger 1 (skAE1) to mediate hypoosmosis-induced taurine permeability as well as associated regulatory events, skAE1 was expressed in Xenopus oocytes. This study focused on investigating the role of tyrosine kinases and lipid rafts in the regulation of the channel. The results showed that tyrosine kinase inhibitors and lipid raft-disrupting agents inhibited the volume-sensitive organic osmolyte channel while protein tyrosine phosphatase inhibitors activated the channel in oocytes expressing skAE1. To study the role of lipid rafts in the activation of the volume-sensitive organic osmolyte channel, the cellular localization of skAE1 was investigated. Also, the role of tyrosine kinases was investigated by examining the tyrosine phosphorylation state of skAE1. Hypoosmotic stress induced mobilization of skAE1 into light membranes and the cell surface as well as tyrosine phosphorylation of skAE1. These events are involved in the activation of the volume-sensitive organic osmolyte channel in Xenopus oocytes expressing skAE1.  相似文献   

20.
Recent studies indicate a plasmalemmal localisation of eukaryotic porin, i.e. voltage-dependent anion-selective channel (VDAC), and there is evidence that the channel in this cell compartment is engaged in cell volume regulation. Until recently, others and we have used immuno-topochemical and biochemical methods to demonstrate the integration of the channel into the cell membrane and endoplasmic reticulum of vertebrate cells. In the present study, we used molecular biological methods to induce the heterologous expression of tagged human type-1 porin in oocytes of Xenopus laevis and to illustrate its appearance at the plasma membrane of these cells. Applying confocal fluorescent microscopy, green fluorescent protein attached to the C-terminus of porin could clearly be recorded at the cell surface. N-terminal green fluorescent protein-porin fusion proteins remained in the cytoplasm, indicating a strong influence of the porin N-terminus on protein trafficking to the plasma membrane. FLAG-tagged porin was also expressed in frog oocytes. Here, plasmalemmal expression was observed using anti-FLAG M2 monoclonal antibodies and gold-conjugated secondary antibodies, followed by silver enhancement through scanning electron microscopy. In contrast to the EGFP-porin fusion protein, the influence of the small FLAG-epitope (8 amino acids) did not prevent plasmalemmal expression of N-terminally tagged porin. These results indicate the definite expression of human type-1 porin in the plasma membrane of Xenopus oocytes. They thus corroborate our early data on the extra-mitochondrial expression of the eukaryotic porin channel and are essential for future electrophysiological studies on the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号