首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, with approximately 170 million humans chronically infected. Persistent HCV infection often leads to fibrosis, cirrhosis, and hepatocellular carcinoma (27). There is no vaccine against HCV, and the most widely used therapy involves the administration of type I interferon (IFN-α2Α) combined with ribavirin. However, this treatment is often associated with severe adverse effects and is often ineffective (53).HCV is a member of the Flaviviridae family and is the sole member of the genus Hepacivirus (43). HCV is an enveloped virus with a single-strand positive RNA genome that encodes a unique polyprotein of ∼3,000 amino acids (14, 15). A single open reading frame is flanked by untranslated regions (UTRs), the 5′ UTR and 3′ UTR, that contain RNA sequences essential for RNA translation and replication, respectively (17, 18, 26). Translation of the single open reading frame is driven by an internal ribosomal entry site (IRES) sequence residing within the 5′ UTR (26). The resulting polyprotein is processed by cellular and viral proteases into its individual components (reviewed in reference 55). The E1, E2, and core structural proteins are required for particle formation (5, 6) but not for viral RNA replication or translation (7, 40). These processes are mediated by the nonstructural (NS) proteins NS3, NS4A, NS4B, NS5A, and NS5B, which constitute the minimal viral components necessary for efficient viral RNA replication (7, 40).Expression of the viral polyprotein leads to the formation of virus-like particles (VLPs) in HeLa (48) and Huh-7 cells (23). Furthermore, overexpression of core, E1, and E2 is sufficient for the formation of VLPs in insect cells (3, 4). In the context of a viral infection, the viral structural proteins (65), p7 (31, 49, 61), and all of the nonstructural proteins (2, 29, 32, 41, 44, 63, 67) are required for the production of infectious particles, independent of their role in HCV RNA replication. It is not known whether the nonstructural proteins are incorporated into infectious virions.The current model for HCV morphogenesis proposes that the core protein encapsidates the viral genome in areas where endoplasmic reticulum (ER) cisternae are in contact with lipid droplets (47), forming HCV RNA-containing particles that acquire the viral envelope by budding through the ER membrane (59). We along with others showed recently that infectious particle assembly requires microsomal transfer protein (MTP) activity and apolipoprotein B (apoB) (19, 28, 50), suggesting that these two components of the very-low-density lipoprotein (VLDL) biosynthetic machinery are essential for the formation of infectious HCV particles. This idea is supported by the reduced production of infectious HCV particles in cells that express short hairpin RNAs (shRNAs) targeting apolipoprotein E (apoE) (12, 30).HCV RNA displays various density profiles, depending on the stage of the infection at which the sample is obtained (11, 58). The differences in densities and infectivities have been attributed to the presence of host lipoproteins and antibodies bound to the circulating viral particles (24, 58). In patients, HCV immune complexes that have been purified by protein A affinity chromatography contain HCV RNA, core protein, triglycerides, apoB (1), and apoE (51), suggesting that these host factors are components of circulating HCV particles in vivo.Recent studies using infectious molecular clones showed that both host and viral factors can influence the density profile of infectious HCV particles. For example, the mean particle density is reduced by passage of cell culture-grown virus through chimpanzees and chimeric mice whose livers contain human hepatocytes (39). It has also been shown that a point mutation in the viral envelope protein E2 (G451R) increases the mean density and specific infectivity of JFH-1 mutants (70).HCV particles exist as a mixture of infectious and noninfectious particles in ratios ranging from 1:100 to 1:1,000, both in vivo (10) and in cell culture (38, 69). Extracellular infectious HCV particles have a lower average density than their noninfectious counterparts (20, 24, 38). Equilibrium sedimentation analysis indicates that particles with a buoyant density of ∼1.10 to 1.14 g/ml display the highest ratio of infectivity per genome equivalent (GE) both in cell culture (20, 21, 38) and in vivo (8). These results indicate that these samples contain relatively more infectious particles than any other particle population. Interestingly, mutant viruses bearing the G451R E2 mutation display an increased infectivity-HCV RNA ratio only in fractions with a density of ∼1.1 g/ml (21), reinforcing the notion that this population is selectively enriched in infectious particles.The size of infectious HCV particles has been estimated in vivo by filtration (50 to 80 nm) (9, 22) and by rate-zonal centrifugation (54 nm) (51) and in cell culture by calculation of the Stokes radius inferred from the sedimentation velocity of infectious JFH-1 particles (65 to 70 nm) (20). Previous ultrastructural studies using patient-derived material report particles with heterogeneous diameters ranging from 35 to 100 nm (33, 37, 42, 57, 64). Cell culture-derived particles appear to display a diameter within that range (∼55 nm) (65, 68).In this study we exploited the increased growth capacity of a cell culture-adapted virus bearing the G451R mutation in E2 (70) and the enhanced particle production of the hyperpermissive Huh-7 cell subclone Huh-7.5.1 clone 2 (Huh-7.5.1c2) (54) to produce quantities of infectious HCV particles that were sufficient for electron cryomicroscopy (cryoEM) analyses. These studies revealed two major particle populations with diameters of ∼60 and ∼45 nm. The larger-diameter particles were distinguished by the presence of a membrane bilayer, characterized by electron density attributed to the lipid headgroups in its leaflets. Isopycnic ultracentrifugation showed that the ∼60-nm particles are enriched in fractions with a density of ∼1.1 g/ml, where optimal infectivity-HCV RNA ratios are observed. These results indicate that the predominant morphology of the infectious HCV particle is spherical and pleomorphic and surrounded by a membrane envelope.  相似文献   

2.
We have recently demonstrated that human apolipoprotein E (apoE) is required for the infectivity and assembly of hepatitis C virus (HCV) (K. S. Chang, J. Jiang, Z. Cai, and G. Luo, J. Virol. 81:13783-13793, 2007; J. Jiang and G. Luo, J. Virol. 83:12680-12691, 2009). In the present study, we have determined the molecular basis underlying the importance of apoE in HCV assembly. Results derived from mammalian two-hybrid studies demonstrate a specific interaction between apoE and HCV nonstructural protein 5A (NS5A). The C-terminal third of apoE per se is sufficient for interaction with NS5A. Progressive deletion mutagenesis analysis identified that the C-terminal α-helix domain of apoE is important for NS5A binding. The N-terminal receptor-binding domain and the C-terminal 20 amino acids of apoE are dispensable for the apoE-NS5A interaction. The NS5A-binding domain of apoE was mapped to the middle of the C-terminal α-helix domain between amino acids 205 and 280. Likewise, deletion mutations disrupting the apoE-NS5A interaction resulted in blockade of HCV production. These findings demonstrate that the specific apoE-NS5A interaction is required for assembly of infectious HCV. Additionally, we have determined that using different major isoforms of apoE (E2, E3, and E4) made no significant difference in the apoE-NS5A interaction. Likewise, these three major isoforms of apoE are equally compatible with infectivity and assembly of infectious HCV, suggesting that apoE isoforms do not differentially modulate the infectivity and/or assembly of HCV in cell culture.Hepatitis C virus (HCV) remains a major global health problem, chronically infecting approximately 170 million people worldwide, with severe consequences such as hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC) (2, 57). The current standard therapy for hepatitis C is pegylated alpha interferon in combination with ribavirin. However, this anti-HCV regimen has limited efficacy (<50% sustained antiviral response for the dominant genotype 1 HCV) and causes severe side effects (17, 39). Recent clinical studies on the HCV protease- and polymerase-specific inhibitors showed promising results but also found that drug-resistant HCV mutants emerged rapidly (3, 27), undermining the efficacy of specific antiviral therapy for hepatitis C. Therefore, future antiviral therapies for hepatitis C likely require a combination of several safer and more efficacious antiviral drugs that target different steps of the HCV life cycle. The lack of knowledge about the molecular details of the HCV life cycle has significantly impeded the discovery of antiviral drugs and development of HCV vaccines.HCV is a small enveloped RNA virus classified as a member of the Hepacivirus genus in the family Flaviviridae (46, 47). It contains a single positive-sense RNA genome that encodes a large viral polypeptide, which is proteolytically processed by cellular peptidases and viral proteases into different structural and nonstructural proteins in the order of C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (30, 31). Other novel viral proteins derived from the C-coding region have also been discovered (11, 13, 55, 59). The nucleotides at both the 5′ and 3′ untranslated regions (UTR) are highly conserved and contain cis-acting RNA elements important for internal ribosome entry site (IRES)-mediated initiation of protein translation and viral RNA replication (15, 16, 33, 56, 60).The success in the development of HCV replicon replication systems has made enormous contributions to the determination of the roles of the conserved RNA sequences/structures and viral NS proteins in HCV RNA replication (4, 5, 7, 32). However, the molecular mechanisms of HCV assembly, morphogenesis, and egression have not been well understood. A breakthrough advance has been the development of robust cell culture systems for HCV infection and propagation, which allow us to determine the roles of viral and cellular proteins in the HCV infectious cycle (9, 29, 54, 63). We have recently demonstrated that infectious HCV particles are enriched in apolipoprotein E (apoE) and that apoE is required for HCV infection and assembly (10, 23). apoE-specific monoclonal antibodies efficiently neutralized HCV infectivity. The knockdown of endogenous apoE expression by a specific small interfering RNA (siRNA) and the blockade of apoE secretion by microsomal triglyceride transfer protein (MTP) inhibitors remarkably suppressed HCV assembly (10, 23). More importantly, apoE was found to interact with the HCV NS5A in the cell and purified HCV particles, as determined by yeast two-hybrid and coimmunoprecipitation (co-IP) studies (6, 23). These findings suggest that apoE has dual functions in HCV infection and assembly via distinct interactions with cell surface receptors and HCV NS5A. To further understand the molecular mechanism of apoE in HCV assembly, we carried out a mutagenesis analysis of apoE and determined the importance of the apoE-NS5A interaction in HCV assembly. Progressive deletion mutagenesis analysis has mapped the NS5A-binding domain of apoE to the C-terminal α-helix region between amino acid residues 205 and 280. Mutations disrupting the apoE-NS5A interaction also blocked HCV production. Additionally, we have determined the effects of three major isoforms of apoE on HCV infection and assembly. Our results demonstrate that apoE isoforms do not determine the infectivity and assembly of infectious HCV in cell culture.  相似文献   

3.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

4.
5.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   

6.
Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with generally 4 and 11 N-linked glycans on E1 and E2, respectively. Studies using mutated recombinant HCV envelope glycoproteins incorporated into retroviral pseudoparticles (HCVpp) suggest that some glycans play a role in protein folding, virus entry, and protection against neutralization. The development of a cell culture system producing infectious particles (HCVcc) in hepatoma cells provides an opportunity to characterize the role of these glycans in the context of authentic infectious virions. Here, we used HCVcc in which point mutations were engineered at N-linked glycosylation sites to determine the role of these glycans in the functions of HCV envelope proteins. The mutants were characterized for their effects on virus replication and envelope protein expression as well as on viral particle secretion, infectivity, and sensitivity to neutralizing antibodies. Our results indicate that several glycans play an important role in HCVcc assembly and/or infectivity. Furthermore, our data demonstrate that at least five glycans on E2 (denoted E2N1, E2N2, E2N4, E2N6, and E2N11) strongly reduce the sensitivity of HCVcc to antibody neutralization, with four of them surrounding the CD81 binding site. Altogether, these data indicate that the glycans associated with HCV envelope glycoproteins play roles at different steps of the viral life cycle. They also highlight differences in the effects of glycosylation mutations between the HCVpp and HCVcc systems. Furthermore, these carbohydrates form a “glycan shield” at the surface of the virion, which contributes to the evasion of HCV from the humoral immune response.Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus that causes serious liver diseases in humans (31). More than 170 million people worldwide are seropositive for HCV and at risk for developing cirrhosis and hepatocellular carcinoma (50). HCV is a small, enveloped virus that belongs to the Hepacivirus genus in the Flaviviridae family (31). Its genome encodes a single polyprotein precursor of about 3,000-amino-acid residues that is cleaved co- and posttranslationally by cellular and viral proteases to yield at least 10 mature products (31). The two envelope glycoproteins, E1 and E2, are released from the polyprotein by signal peptidase cleavages. These two proteins assemble as noncovalent heterodimers, which are retained mainly in the endoplasmic reticulum (ER) (36), and they are found as large disulfide-linked oligomers on the surfaces of HCV particles (46). HCV glycoproteins are involved in the entry process, and since they are present on the surfaces of viral particles, these proteins are the targets of neutralizing antibodies (4, 21).E1 and E2 generally contain 4 and 11 N-glycosylation sites, respectively, all of which have been shown to be modified by glycans (19). Despite variability in HCV envelope glycoprotein sequences, the four glycosylation sites of E1 and nine of E2 are highly conserved, suggesting that the glycans associated with these proteins play an essential role in the HCV life cycle (22). Using retroviral particles pseudotyped with genotype 1a (H strain) HCV envelope glycoproteins (HCVpp), recent studies have determined the potential roles played by these glycans in protein folding, HCV entry, and protection against neutralization (14, 19, 22). Indeed, the lack of glycan E1N1, E1N4, E2N8, or E2N10 strongly affects the incorporation of HCV glycoproteins into HCVpp, suggesting that these glycans are important for correct protein folding (19). Furthermore, mutation of glycosylation sites E2N2 or E2N4 alters HCVpp infectivity despite normal incorporation into pseudotyped particles, suggesting a role for the corresponding glycans in viral entry, at least in this model system (19). Finally, glycans at positions E2N1, E2N6, and E2N11 were shown to reduce the sensitivity of HCVpp to antibody neutralization as well as access of the CD81 coreceptor to its binding site on E2, suggesting that glycans also contribute to HCV evasion of the humoral immune response (14, 22).It has recently been proposed that targeting glycans could be a promising approach to inhibiting viral infection (1). Indeed, HCV, as well as several other viruses with highly glycosylated envelope proteins, can be inhibited by carbohydrate binding agents such as cyanovirin-N and pradimicin A (1, 7, 23). Furthermore, resistance against drugs that target glycans is likely to develop and will probably result in mutations at some glycosylation sites (3, 52). However, since glycans associated with viral envelope proteins play an important role in the viral life cycle, adaptation of viruses to the selective pressure of carbohydrate-binding agents will most likely come at a replicative cost to the virus (2).Although the role of HCV glycans has been studied using mutant recombinant HCV envelope glycoproteins incorporated into HCVpp, these particles do not recapitulate all the functions of HCV envelope proteins. Cell culture-derived virus (HCVcc) (32, 49, 55) assembles in an ER-derived compartment in association with very low density lipoproteins (17, 26), whereas HCVpp are assembled in a post-Golgi compartment and are not associated with lipoproteins (44). Importantly, this leads to differences between HCVpp and HCVcc in the oligomerization of the envelope glycoproteins (46). It is also important to note that the carbohydrate composition of viral glycoproteins can differ when the same virus is grown in different cell lines (13). Thus, HCVpp that are produced in 293T cells are not the most appropriate model for glycosylation studies, since HCV tropism is restricted to the liver. Furthermore, differences in envelope protein glycosylation have been observed between HCVpp and HCVcc particles (46). Differences in some HCV envelope protein functions were also observed when the HCVpp and HCVcc systems were compared (28, 29, 42, 43). The development of the HCVcc system provides, therefore, the opportunity to characterize the role of E1/E2-associated glycans in the context of authentic infectious virions. Here, we analyzed the role of E1/E2 glycans by introducing point mutations at N-linked glycosylation sites in the context of the HCVcc system. The effects of these mutations on virus replication, particle secretion, infectivity, and sensitivity to neutralizing antibodies were investigated. Our results demonstrate that several glycans play an important role in HCVcc assembly and/or infectivity and reduce access of neutralizing antibodies to their epitopes.  相似文献   

7.
Hepatitis C virus (HCV) is a liver-tropic pathogen with severe health consequences for infected individuals. Chronic HCV infection can progress to cirrhosis and hepatocellular carcinoma and is a leading indicator for liver transplantation. The HCV core protein is an essential component of the infectious virus particle, but many aspects of its role remain undefined. The C-terminal region of the core protein acts as a signal sequence for the E1 glycoprotein and undergoes dual processing events during infectious virus assembly. The exact C terminus of the mature, virion-associated core protein is not known. Here, we performed genetic analyses to map the essential determinants of the HCV core C-terminal region, as well as to define the minimal length of the protein that can function for infectious virus production in trans.Hepatitis C virus (HCV) is a major contributor to the development of human liver diseases, infecting approximately 2% of the population, or 130 million people, worldwide (2). Up to 80% of HCV infections progress to chronic hepatitis and can lead to cirrhosis and hepatocellular carcinoma (38). No vaccine exists to prevent HCV infection, and current treatments are frequently inadequate.HCV is an enveloped virus of the genus Hepacivirus in the family Flaviviridae (30). The single-stranded, positive-sense RNA genome encodes a polyprotein of about 3,000 amino acids, which is processed by viral and host proteases into three structural proteins (the core protein, E1, and E2) and seven presumed nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). The core protein is thought to encapsidate the RNA genome within the virion, forming a complex that is surrounded by a host cell-derived lipid bilayer displaying the envelope glycoproteins, E1 and E2. Although not thought to be components of the virion, p7 and NS2 have recently been implicated in the production of infectious virus (5, 12, 29, 33, 39). The remaining nonstructural proteins, NS3 to NS5B, are essential for genome replication and have additional emerging roles in virus assembly. NS3 possesses RNA helicase/NTPase activities and together with its cofactor, NS4A, forms the major viral protease. NS5B is the RNA-dependent RNA polymerase (reviewed in references 16 and 27).The core protein is the first protein produced during translation of the incoming viral genome. A signal sequence in its C-terminal region targets the nascent E1 glycoprotein to the endoplasmic reticulum (ER) membrane and is the substrate for processing by two host proteases. Cleavage by signal peptidase (SP) following core amino acid 191 (31) is thought to precede processing by signal peptide peptidase (SPP) (20, 26), an integral membrane aspartyl protease that cleaves within transmembrane segments (37). The C terminus of the mature, infectious-virion-associated core protein has not been determined, but it is speculated to lie between amino acids 173 and 182 (24, 31). SPP processing has been shown to mobilize the core from the ER membrane and enable it to traffic to lipid droplets (20). These triglyceride-rich storage organelles have recently been shown to be the sites of HCV particle assembly (21). Consistent with this finding, impaired SPP activity leads to decreased HCV infectious titers (34). Dual processing of the core proteins is a common feature of the Flaviviridae family. GB virus B, a hepacivirus, and classical swine fever virus, a related pestivirus, encode core proteins that undergo SP and SPP processing during maturation (8, 35). In the genus Flavivirus, the capsid protein undergoes regulated cleavage by the viral NS2B-3 protease and SP; this stepwise processing has been shown to be essential for proper encapsidation of genomes into infectious particles (3).The development of an infectious cell culture system for HCV has been a major breakthrough in the field (7). Many details of virus morphogenesis and infectivity, however, are still unknown. In this study, we examined the role of the C-terminal portion of the HCV core protein and identified individual amino acids that are essential for infectious virus assembly and core protein stability. Findings from alanine-scanning and transcomplementation studies suggest that at least 177 residues of the core protein are needed to produce infectious particles.  相似文献   

8.
Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1WT, the JFH1N415D was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1WT under MAb AP33 selective pressure. MAb AP33 neutralized JFH1T416A and JFH1I422L more efficiently than the WT virus, while neutralization of JFH1N417S and JFH1G418D was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1N415D, highlighting the importance of the E2 412-423 region in virus entry.Hepatitis C virus (HCV), which belongs to the Flaviviridae family, has a positive-sense single-stranded RNA genome encoding a polyprotein that is cleaved by cellular and viral proteases to yield mature structural and nonstructural proteins. The structural proteins consist of core, E1 and E2, while the nonstructural proteins are p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B (42). The hepatitis C virion comprises the RNA genome surrounded by the structural proteins core (nucleocapsid) and E1 and E2 (envelope glycoproteins). The HCV glycoproteins lie within a lipid envelope surrounding the nucleocapsid and play a major role in HCV entry into host cells (21). The development of retrovirus-based HCV pseudoparticles (HCVpp) (3) and the cell culture infectious clone JFH1 (HCVcc) (61) has provided powerful tools to study HCV entry.HCV entry is initiated by the binding of virus particles to attachment factors which are believed to be glycosaminoglycans (2), low-density lipoprotein receptor (41), and C-type lectins such as DC-SIGN and L-SIGN (12, 37, 38). Upon attachment at least four entry factors are important for particle internalization. These include CD81 (50), SR-BI (53) and the tight junction proteins claudin-1 (15) and occludin (6, 36, 51).CD81, a member of the tetraspanin family, is a cell surface protein with various functions including tissue differentiation, cell-cell adhesion and immune cell maturation (34). It consists of a small and a large extracellular loop (LEL) with four transmembrane domains. Viral entry is dependent on HCV E2 binding to the LEL of CD81 (3, 50). The importance of HCV glycoprotein interaction with CD81 is underlined by the fact that many neutralizing antibodies compete with CD81 and act in a CD81-blocking manner (1, 5, 20, 45).SR-BI is a multiligand receptor expressed on liver cells and on steroidogenic tissue. It binds to high-density lipoproteins (HDL), low-density lipoproteins (LDL), and very low-density lipoproteins (VLDL) (31). The SR-BI binding site is mapped to the hypervariable region 1 (HVR-1) of HCV E2 (53). SR-BI ligands, such as HDL and oxidized LDL have been found to affect HCV infectivity (4, 14, 58-60). Indeed, HDL has been shown to enhance HCV infection in an SR-BI-dependent manner (4, 14, 58, 59). Antibodies against SR-BI and knockdown of SR-BI in cells result in a significant inhibition of viral infection in both the HCVpp and the HCVcc systems (5, 25, 32).Although clearly involved in entry and immune recognition, the more downstream function(s) of HCV glycoproteins are poorly understood, as their structure has not yet been solved. Nonetheless, mutational analysis and mapping of neutralizing antibody epitopes have delineated several discontinuous regions of E2 that are essential for HCV particle binding and entry (24, 33, 45, 47). One of these is a highly conserved sequence spanning E2 residues 412 to 423 (QLINTNGSWHIN). Several broadly neutralizing monoclonal antibodies (MAbs) bind to this epitope. These include mouse monoclonal antibody (MAb) AP33, rat MAb 3/11, and the human MAbs e137, HCV1, and 95-2 (8, 16, 44, 45, 49). Of these, MAbs AP33, 3/11, and e137 are known to block the binding of E2 to CD81.Cell culture-adaptive mutations within the HCV glycoproteins are valuable for investigating the virus interaction(s) with cellular receptors (18). In the present study, we characterize an asparagine-to-aspartic acid mutation at residue 415 (N415D) in HCV strain JFH1 E2 that arose during the long-term passaging of infected human hepatoma Huh-7 cells. Alongside N415D, we also characterize three adjacent cell culture adaptive mutations reported previously and a novel substitution generated in the present study by propagating virus under MAb AP33 selective pressure to gain further insight into the function of this region of E2 in viral infection.  相似文献   

9.
10.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   

11.
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. As HCV infects only human and chimpanzee cells, antiviral therapy and vaccine development have been hampered by the lack of a convenient small-animal model. In this study we further investigate how the species tropism of HCV is modulated at the level of cell entry. It has been previously determined that the tight junction protein occludin (OCLN) is essential for HCV host cell entry and that human OCLN is more efficient than the mouse ortholog at mediating HCV cell entry. To further investigate the relationship between OCLN sequence and HCV species tropism, we compared OCLN proteins from a range of species for their ability to mediate infection of naturally OCLN-deficient 786-O cells with lentiviral pseudoparticles bearing the HCV glycoproteins. While primate sequences function equivalently to human OCLN, canine, hamster, and rat OCLN had intermediate activities, and guinea pig OCLN was completely nonfunctional. Through analysis of chimeras between these OCLN proteins and alanine scanning mutagenesis of the extracellular domains of OCLN, we identified the second half of the second extracellular loop (EC2) and specific amino acids within this domain to be critical for modulating the HCV cell entry factor activity of this protein. Furthermore, this critical region of EC2 is flanked by two conserved cysteine residues that are essential for HCV cell entry, suggesting that a subdomain of EC2 may be defined by a disulfide bond.Hepatitis C virus (HCV), a member of the family Flaviviridae, is the causative agent of classically defined non-A, non-B hepatitis and is highly prevalent, with approximately 3% of the worldwide population infected (48). HCV infection often results in a chronic, life-long infection that can have severe health consequences, including hepatitis, cirrhosis, hepatocellular carcinoma, and liver failure. There is no HCV vaccine available, and the currently employed interferon-based treatment is inadequate as it has severe side effects and is effective only in half of the major genotype-infected individuals (22, 32). Specific anti-HCV inhibitors targeting the viral proteases and polymerase are currently being developed and will likely improve therapeutic options substantially. Undoubtedly, however, the emergence of viral resistance to such inhibitors will be a problem facing future HCV treatment options. As such, developing a spectrum of inhibitors targeting diverse steps in the virus life cycle, including HCV cell entry, is a priority for HCV research. Such inhibitors may be particularly useful following liver transplantation. Although HCV is the leading cause of liver transplants worldwide (10), the usefulness of such procedures is limited by subsequent universal graft reinfection and often accelerated disease progression (21). Even transiently inhibiting graft reinfection with HCV cell entry inhibitors could greatly improve the effectiveness of this procedure. Therefore, a greater understanding of HCV cell entry is required for the development of therapies targeting this stage of the viral life cycle.HCV host cell entry is a complex process that culminates in the clathrin-dependent endocytosis of the virion and low-pH-mediated fusion of viral and cellular lipid membranes in an early endosome (9, 12, 26, 27, 36, 51). The entry process requires the two viral envelope glycoproteins, E1 and E2, and many cellular factors, including glycosaminoglycans (GAGs) (3, 27), lipoproteins, the low-density lipoprotein receptor (LDL-R) (1, 38-40), tetraspanin CD81 (43), scavenger receptor class B type I (SR-BI) (47), and two tight junction proteins, claudin-1 (CLDN1) (17) and occludin (OCLN) (31, 44). The polarized nature of hepatocytes and the tight junction roles of OCLN and CLDN1 suggest an entry pathway similar to that of the group B coxsackieviruses, where the virion initially binds readily accessible factors that then provide a mechanism for migration of the virion into the tight junction region, just prior to internalization (14). Indeed, cellular factors are utilized by the incoming HCV virion in a temporal manner. At least GAGs and LDL-R appear to mediate virion binding (1, 3, 27, 38-40). Conflicting evidence has shown that SR-BI acts as either a binding (11) or postbinding entry factor (53), while CD81 (7, 13, 17, 27) and CLDN1 (17, 29) play postbinding roles in the HCV cell entry process. Although the kinetics of OCLN usage have not been clearly defined, this protein does not appear to play a role in virion binding (6). However, recent data showing that CD81 and CLDN1 may form complexes prior to infection (15, 24, 25, 28, 29, 35, 52) and imaging of the cell entry process (12) may contradict such a model.Human hepatocytes are the major target for HCV infection. While multiple blocks at a number of viral life cycle stages likely exist in other cell types, cell entry is one of the events limiting HCV tropism (45). Although species differences in SR-BI and CLDN1 may exert some influence on this selectivity (11, 23), CD81 and OCLN appear to be largely responsible for the restriction of HCV entry to cells from human and chimpanzee origin (7, 8, 20, 44). In fact, overexpression of the human versions of CD81 and OCLN, along with either mouse or human SR-BI and CLDN1, renders a mouse cell able to support HCV cell entry (44).We sought to provide greater insight into the species-specific restrictions of HCV cell entry and to elucidate the mechanism by which OCLN acts to mediate HCV cell entry. We examined the ability of OCLN proteins from a range of species to mediate HCV cell entry and how this function correlated with the degree of similarity to the human protein. A six-amino-acid portion of the second extracellular loop (EC2) of human OCLN was found to be responsible for the species-specific differences in entry factor function. OCLN proteins that were less functional than the human protein could be rendered fully functional by adding the human residues at these positions. Conversely, the ability of the human OCLN protein to mediate HCV cell entry was impaired by swapping this region with the corresponding sequence from species with less functional OCLN proteins. Comprehensive alanine scanning of the extracellular loops of human OCLN confirmed that the second half of EC2 was most important for the HCV cell entry process. Two cysteine residues that flank this region were found to be essential for HCV cell entry, suggesting that these residues may define a disulfide-linked subdomain of EC2. None of these amino acid changes influenced OCLN expression or localization, implying that they may serve to modulate an interaction with either another host protein or the incoming HCV virion.  相似文献   

12.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

13.
14.
The hepatitis C virus (HCV) nonstructural protein 2 (NS2) is a dimeric multifunctional hydrophobic protein with an essential but poorly understood role in infectious virus production. We investigated the determinants of NS2 function in the HCV life cycle. On the basis of the crystal structure of the postcleavage form of the NS2 protease domain, we mutated conserved features and analyzed the effects of these changes on polyprotein processing, replication, and infectious virus production. We found that mutations around the protease active site inhibit viral RNA replication, likely by preventing NS2-3 cleavage. In contrast, alterations at the dimer interface or in the C-terminal region did not affect replication, NS2 stability, or NS2 protease activity but decreased infectious virus production. A comprehensive deletion and mutagenesis analysis of the C-terminal end of NS2 revealed the importance of its C-terminal leucine residue in infectious particle production. The crystal structure of the NS2 protease domain shows that this C-terminal leucine is locked in the active site, and mutation or deletion of this residue could therefore alter the conformation of NS2 and disrupt potential protein-protein interactions important for infectious particle production. These studies begin to dissect the residues of NS2 involved in its multiple essential roles in the HCV life cycle and suggest NS2 as a viable target for HCV-specific inhibitors.An estimated 130 million people are infected with hepatitis C virus (HCV), the etiologic agent of non-A, non-B viral hepatitis. Transmission of the virus occurs primarily through blood or blood products. Acute infections are frequently asymptomatic, and 70 to 80% of the infected individuals are unable to eliminate the virus. Of the patients with HCV-induced chronic hepatitis, 15 to 30% progress to cirrhosis within years to decades after infection, and 3 to 4% of patients develop hepatocellular carcinoma (17). HCV infection is a leading cause of cirrhosis, end-stage liver disease, and liver transplantation in Europe and the United States (7), and reinfection after liver transplantation occurs almost universally. There is no vaccine available, and current HCV therapy of pegylated alpha interferon in combination with ribavirin leads to a sustained response in only about 50% of genotype 1-infected patients.The positive-stranded RNA genome of HCV is about 9.6 kb in length and encodes a single open reading frame flanked by 5′ and 3′ nontranslated regions (5′ and 3′ NTRs). The translation product of the viral genome is a large polyprotein containing the structural proteins (core, envelope proteins E1 and E2) in the N-terminal region and the nonstructural proteins (p7, nonstructural protein 2 [NS2], NS3, NS4A, NS4B, NS5A, and NS5B) in the C-terminal region. The individual proteins are processed from the polyprotein by various proteases. The host cellular signal peptidase cleaves between core/E1, E1/E2, E2/p7, and p7/NS2, and signal peptide peptidase releases core from the E1 signal peptide. Two viral proteases, the NS2-3 protease and the NS3-4A protease, cleave the remainder of the viral polyprotein in the nonstructural region (22, 27). The structural proteins package the genome into infectious particles and mediate virus entry into a naïve host cell; the nonstructural proteins NS3 through NS5B form the RNA replication complex. p7 and NS2 are not thought to be incorporated into the virion but are essential for the assembly of infectious particles (14, 36); however, their mechanisms of action are not understood.NS2 (molecular mass of 23 kDa) is a hydrophobic protein containing several transmembrane segments in the N-terminal region (5, 9, 32, 39). The C-terminal half of NS2 and the N-terminal third of NS3 form the NS2-3 protease (10, 11, 26, 37). NS2 is not required for the replication of subgenomic replicons, which span NS3 to NS5B (20). However, cleavage at the NS2/3 junction is necessary for replication in chimpanzees (16), the full-length replicon (38), and in the infectious tissue culture system (HCVcc) (14). Although cleavage can occur in vitro in the absence of microsomal membranes, synthesis of the polyprotein precursor in the presence of membranes greatly increases processing at the NS2/3 site (32). In vitro studies indicate that purified NS2-3 protease is active in the absence of cellular cofactors (11, 37). In addition to its role as a protease, NS2 has been shown to be required for assembly of infectious intracellular virus (14). The N-terminal helix of NS2 was first implicated in infectivity by the observation that an intergenotypic breakpoint following this transmembrane segment resulted in higher titers of infectious virus (28). Structural and functional characterization of the NS2 transmembrane region has shown that this domain is essential for infectious virus production (13). In particular, a central glycine residue in the first NS2 helix plays a critical role in HCV infectious virus assembly (13). The NS2 protease domain, but not its catalytic activity, is also essential for infectious virus assembly, whereas the unprocessed NS2-3 precursor is not required (13, 14).The crystal structure of the postcleavage NS2 protease domain (NS2pro, residues 94 to 217), revealed a dimeric cysteine protease containing two composite active sites (Fig. 2C; [21]). Two antiparallel α-helices make up the N-terminal subdomain, followed by an extended crossover region, which positions the β-sheet-rich C-terminal subdomain near the N-terminal region of the partner monomer. Two of the conserved residues of the catalytic triad (His 143, Glu 163) are located in the loop region after the second N-terminal helix of one monomer, while the third catalytic residue, Cys 184, is located in the C-terminal subdomain of the other monomer. Creation of this unusual pair of composite active sites through NS2 dimerization has been shown to be essential for autoproteolytic cleavage (21). The structure of NS2pro further demonstrated that the C-terminal residue of NS2 remains bound in the active site after cleavage, suggesting a possible mechanism for restriction of this enzyme to a single proteolytic event (21). Here we have used the crystal structure of NS2pro, along with sequence alignments, to target conserved residues in each of the NS2pro structural regions. Our mutational analysis revealed that the residues in the dimer crossover region and the C-terminal subdomain are important for infectious virus production. In contrast, the majority of amino acids in the active site pocket were not required for infectivity. Interestingly, we observed that the extreme C-terminal leucine of NS2 is absolutely essential for generation of infectious virus, as mutations, deletions, and extensions into NS3 are very poorly tolerated. This analysis begins to dissect the determinants of the multiple functions of this important protease in the HCV life cycle.  相似文献   

15.
The variability of the hepatitis C virus (HCV), which likely contributes to immune escape, is most pronounced in hypervariable region 1 (HVR1) of viral envelope protein 2. This domain is the target for neutralizing antibodies, and its deletion attenuates replication in vivo. Here we characterized the relevance of HVR1 for virus replication in vitro using cell culture-derived HCV. We show that HVR1 is dispensable for RNA replication. However, viruses lacking HVR1 (ΔHVR1) are less infectious, and separation by density gradients revealed that the population of ΔHVR1 virions comprises fewer particles with low density. Strikingly, ΔHVR1 particles with intermediate density (1.12 g/ml) are as infectious as wild-type virions, while those with low density (1.02 to 1.08 g/ml) are poorly infectious, despite quantities of RNA and core similar to those in wild-type particles. Moreover, ΔHVR1 particles exhibited impaired fusion, a defect that was partially restored by an E1 mutation (I347L), which also rescues infectivity and which was selected during long-term culture. Finally, ΔHVR1 particles were no longer neutralized by SR-B1-specific immunoglobulins but were more prone to neutralization and precipitation by soluble CD81, E2-specific monoclonal antibodies, and patient sera. These results suggest that HVR1 influences the biophysical properties of released viruses and that this domain is particularly important for infectivity of low-density particles. Moreover, they indicate that HVR1 obstructs the viral CD81 binding site and conserved neutralizing epitopes. These functions likely optimize virus replication, facilitate immune escape, and thus foster establishment and maintenance of a chronic infection.Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus of the family Flaviviridae that has infected an estimated 130 million people worldwide (1). Acute HCV infection is mostly asymptomatic; however, virus persistence can lead to severe liver disease, and within 20 years ca. 20% of chronically infected adults develop cirrhosis (46). In fact, morbidity associated with chronic HCV infection is the most common indication for orthotopic liver transplantation (7). The mechanisms that permit the virus to establish chronic infection in ca. 55 to 85% of cases (24) despite vigorous immune responses are incompletely understood.A number of studies have highlighted the pivotal role of strong, multispecific, and sustained T-cell responses for control of HCV infection (summarized in reference 53). Although resolution of acute HCV infection can occur in the absence of antibodies (47), mounting evidence indicates that neutralizing antibodies also contribute to protective immunity (summarized in reference 62). Nevertheless, HCV often successfully evades cellular and humoral immune pressure likely at least in part via the constant generation of variants created by an error-prone RNA replication machinery. In line with this notion, a high degree of HCV sequence evolution is associated with chronic disease, while a comparatively static pool of variants correlates with resolution (13, 15, 43).Virus isolates from patients are classified into at least 7 different genetic groups (genotypes [GTs]), which differ from each other by ca. 31 to 33% at the nucleotide level (20, 48). However, genetic variability is not equally distributed across the HCV genome, which encodes a large polyprotein of ca. 3,000 amino acids and contains 5′- and 3′-terminal nontranslated regions (NTR) required for RNA replication. More specifically, the 5′ NTR and the terminal 99 bases of the 3′ NTR are most conserved, while the N-terminal 27 amino acids of the envelope glycoprotein 2 (E2), called HVR1, are most divergent among HCV isolates (48). Notably, HVR1 contains epitopes which are recognized by patients'' antibodies (28, 29, 51, 59) and by antibodies that neutralize infection of chimpanzees (14). Moreover, during an acute infection, sequence changes occur almost exclusively within this region, and these are temporally correlated with antibody seroconversion (13). Therefore, the pronounced variability of this portion of E2 is likely due to strong humoral immune pressure, which drives its rapid evolution. However, variability of HVR1 is not random, as the chemicophysical properties and the conformation of this basic domain are well conserved (39). These findings suggest functional constraints for the evolution of HVR1, and the exposure of this epitope on the surface of HCV particles argues for an important role of this domain during virus entry.In line with this assumption, Forns et al. observed that an HCV mutant lacking HVR1 (ΔHVR1) was infectious for chimpanzees but clearly attenuated (17). Interestingly, an increase in titers of the ΔHVR1 virus coincided with emergence of two mutations in the ectodomain of E2, suggesting that these changes may have compensated for a putative functional impairment of the mutant (17).The development of retroviral particles which carry HCV glycoproteins on their surfaces (HCV pseudoparticles [HCVpp]) and, more recently, cell culture-derived HCV (HCVcc) based on the JFH1 strain provides robust models for dissecting the mechanisms of HCV entry in vitro (3, 25, 35, 58, 64). By means of these systems, the tetraspanin CD81, the lipoprotein receptor SR-BI, and tight junction proteins claudin-1 and occludin were identified as essential host factors for HCV infection (3, 5, 12, 25, 41, 42, 45).Moreover, it was recognized that there is a complex interplay between HCV and lipoproteins. Specifically, high-density lipoprotein (HDL) and oxidized low-density lipoprotein (oxLDL), both ligands of SR-BI, modulate HCVpp infection in an SR-BI-dependent fashion (4, 56, 57). Of note, HVR1 seems to be involved in SR-BI-mediated entry of HCVpp (5), since deletion of this domain ablated stimulation of HCVpp infection by HDL and rendered the virus resistant to inhibition by SR-BI-specific antibodies (4, 5), which prevent infection of HCVpp carrying wild-type HCV glycoproteins. Finally, HCVpp lacking HVR1 are more susceptible to neutralization by patient serum-derived immunoglobulins (4). Thus, altogether these results indicated an important role for HVR1 in viral fitness, likely due to an involvement in HCV entry via SR-BI, and in the interaction of HCV with the humoral immune system. Despite these important observations in the HCVpp system, the role of HVR1 in infection by authentic HCV particles was not defined. In addition, it was unclear if HCVpp produced in 293T cells that are unable to produce lipoproteins reflect natural HCV particles with regard to HVR1 function.Therefore, to better understand the role of HVR1 for virus replication and immune evasion, in this study we analyzed the importance of HVR1 for virus replication and neutralization using authentic, cell culture-derived HCV. We dissected the influence of this domain on HCV receptor interactions and membrane fusion and investigated compensatory mechanisms that permit the virus to regain fitness after deletion of HVR1.  相似文献   

16.
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 104 PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r2 value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r2 value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.Waterborne viral infection is one of the most important causes of human morbidity in the world. There are hundreds of different types of human viruses present in human sewage, which, if improperly treated, may become the source of contamination in drinking and recreational waters (6, 12, 19). Furthermore, as water scarcity intensifies in the nation, so has consideration of wastewater reuse as a valid and essential alternative for resolving water shortages (31).Currently, routine viral monitoring is not required for drinking or recreational waters, nor is it required for wastewater that is discharged into the environment. This lack of a monitoring effort is due largely to the lack of methods that can rapidly and sensitively detect infectious viruses in environmental samples. In the past 20 years, tremendous progress has been made in detection of viruses in the environment based on molecular technology (32, 33, 35). PCR and quantitative real-time PCR (qPCR) methods have improved both the speed and sensitivity of viral detection compared with detection by the traditional tissue culture method (2, 11, 17, 18). However, they provide little information on viral infectivity, which is crucial for human health risk assessment (22-24, 35). Our previous work using a real-time PCR assay to detect human adenoviruses (Ads) in sewage could not differentiate the infectious viruses in the secondary treated sewage from those killed by chlorination disinfection (15). In this research, we pursued an innovative approach to detecting infectious viruses in water using fluorescence-activated cell sorting (FACS). This method is rapid and sensitive, with an established record in microbiological research (29, 34, 39).FACS is a specialized type of flow cytometry which provides a method for counting and sorting a heterogeneous mixture of biological cells into two or more kinds, one cell at a time, based upon the specific light-scattering and fluorescent characteristics of each cell (4, 25, 34, 38). It is a useful method since it provides fast and quantitative recording of fluorescent signals from individual cells (14, 16, 34, 47). The FACS viral assay is based on the expression of viral protein inside the recipient cell during viral replication (16). Specific antibody labeled with fluorescence is bound to the target viral protein, which results in fluorescence emission from infected cells. Viral particles outside the cell will not be captured, because the size of virus is below the detection limit of flow cytometry. Therefore, detection of cells, which can be captured with fluorescently labeled viral antibody, is a definitive indication of the presence of infectious virus.This research used human Ads as the target for development of the FACS method. The rationale for this choice is as follows. (i) Ads are important human pathogens that may be transmitted by water consumption and water spray (aerosols) (26, 32). The health hazard associated with exposure to Ads has been demonstrated by epidemiological data and clinical research (1, 7, 9, 35, 40, 43). (ii) Ads are among the most prevalent human viruses identified in human sewage and are frequently detected in marine waters and the Great Lakes (17, 32, 33, 35). (iii) Ads are more resistant to UV disinfection than any other bacteria or viruses (3, 5, 10, 24, 41, 42, 44). Thus, they may survive wastewater treatment as increasing numbers of wastewater treatment facilities switch from chlorination to UV to avoid disinfection by-products. (iv) Some serotypes of Ads, including enteric Ad 40 and 41, are fastidious. They are difficult to detect by plaque assay, and a routine assay of infectivity takes 7 to 14 days (8, 20).In this study, recombinant Ad serotype 5 (rAd5) with the E1A gene (the first transcribed gene after infection) replaced by a green fluorescent protein (GFP) gene was first used to test for sensitivity and speed of the assay. Two other viral proteins were then used as targets for development of FACS assays using Ad serotype 2 (Ad2) and Ad41. This study demonstrated the feasibility, sensitivity, and reliability of the assay for detection of infectious Ads in environmental samples.  相似文献   

17.
Hepatitis C virus (HCV) entry occurs via a pH- and clathrin-dependent endocytic pathway and requires a number of cellular factors, including CD81, the tight-junction proteins claudin 1 (CLDN1) and occludin, and scavenger receptor class B member I (SR-BI). HCV tropism is restricted to the liver, where hepatocytes are tightly packed. Here, we demonstrate that SR-BI and CLDN1 expression is modulated in confluent human hepatoma cells, with both receptors being enriched at cell-cell junctions. Cellular contact increased HCV pseudoparticle (HCVpp) and HCV particle (HCVcc) infection and accelerated the internalization of cell-bound HCVcc, suggesting that the cell contact modulation of receptor levels may facilitate the assembly of receptor complexes required for virus internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization, demonstrating a rate-limiting role for SR-BI in HCV internalization.Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus, classified in the genus Hepacivirus of the family Flaviviridae. Worldwide, approximately 170 million individuals are persistently infected with HCV, and the majority are at risk of developing chronic liver disease. Hepatocytes in the liver are thought to be the principal reservoir of HCV replication. HCV pseudoparticles (HCVpp) demonstrate a restricted tropism for hepatocyte-derived cells, suggesting that virus-encoded glycoprotein-receptor interactions play an important role in defining HCV tissue specificity.Recent evidence suggests that a number of host cell molecules are important for HCV entry: the tetraspanin CD81; scavenger receptor class B member I (SR-BI) (reviewed in reference 11); members of the tight-junction protein family claudin 1 (CLDN1), CLDN6, and CLDN9 (12, 34, 48, 52); and occludin (OCLN) (2, 33, 40). HCV enters cells via a pH- and clathrin-dependent endocytic pathway; however, the exact role(s) played by each of the host cell molecules in this process is unclear (4, 8, 21, 34, 45).CD81 and SR-BI interact with HCV-encoded E1E2 glycoproteins, suggesting a role in mediating virus attachment to the cell (reviewed in reference 44). In contrast, there is minimal evidence to support direct interaction of CLDN1 or OCLN with HCV particles (12). Evans and colleagues proposed that CLDN1 acts at a late stage in the entry process and facilitates fusion between the virus and host cell membranes (12). We (13, 19) and others (9, 48) have reported that CLDN1 associates with CD81, suggesting a role for CLDN1-CD81 complexes in viral entry. Cukierman et al. recently reported that CLDN1 enrichment at cell-cell contacts may generate specialized membrane domains that promote HCV internalization (9). In this study, we demonstrate that cellular contact modulates SR-BI and CLDN1 expression levels and promotes HCV internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization rates, demonstrating a critical and rate-limiting role for SR-BI in HCV internalization.  相似文献   

18.
Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.Hepatitis C virus (HCV) infection represents a significant global healthcare burden, and current estimates suggest that a minimum of 3% of the world''s population is chronically infected (4, 19). The virus is responsible for many cases of severe chronic liver diseases, including cirrhosis and hepatocellular carcinoma (4, 16, 19). HCV is a positive-stranded RNA virus belonging to the family Flaviviridae. Its ∼9.6-kb genome is translated into a single polypeptide of about 3,000 amino acids (aa), in which the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B reside in the C-terminal half region (6, 34, 44). NS4A, a small 7-kDa protein, functions as a cofactor for NS3 to enhance NS3 enzyme activities such as serine protease and helicase activities. The hydrophobic N-terminal region of NS4A, which is predicted to form a transmembrane α-helix, is responsible for membrane anchorage of the NS3-4A complex (8, 44, 50), and the central region of NS4A is important for the interaction with NS3 (10, 44). A recent study demonstrated the involvement of the C terminus of NS4A in the regulation of NS5A hyperphosphorylation and viral replication (28).The development of HCV replicon technology several years ago accelerated research on viral RNA replication (7, 44). Furthermore, a robust cell culture system for propagation of infectious HCV particles was developed using a viral genome of HCV genotype 2a, JFH-1 strain, enabling us to study every process in the viral life cycle (27, 47, 54). RNA derived from genotype 1a, HCV H77, containing cell-culture adaptive mutations, also produces infectious viruses (52). Using these systems, it has been reported that the HCV genome replicates in a distinct, subcellular replication complex (RC) compartment, which includes NS3-5B and the viral RNA (2, 14, 33). The RC forms in a distinct compartment with high concentrations of viral and cellular components located on detergent-resistant membrane (DRM) structures, possibly a lipid-raft structure (2, 41), which may protect the RC from external proteases and nucleases. Almost all processes in viral replication are dependent on the host cell''s machinery and involve intimate interaction between viral and host proteins. However, the functional roles of host factors interacting with the HCV RC in viral genome replication remain ambiguous.To gain a better understanding of cellular factors that are components of the HCV RC and that function as regulators of viral replication, a comparative proteomic analysis of DRM fractions from HCV replicon and parental cells and subsequent RNA interference (RNAi) silencing of selected genes were performed. We identified creatine kinase B (CKB) as a key factor for the HCV genome replication. CKB catalyzes the reversible transfer of the phosphate group of phosphocreatine (pCr) to ADP to yield ATP and creatine and is known to play important roles in local delivery and cellular compartmentalization of ATP (48, 51). The findings obtained here suggest that recruitment of CKB to the HCV RC, through CKB interaction with NS4A, is essential for maintenance or enhancement of viral replicase activity.  相似文献   

19.
Replication of hepatitis C virus (HCV) RNA occurs on intracellular membranes, and the replication complex (RC) contains viral RNA, nonstructural proteins, and cellular cofactors. We previously demonstrated that cyclophilin A (CyPA) is an essential cofactor for HCV infection and the intracellular target of cyclosporine''s anti-HCV effect. Here we investigate the mechanism by which CyPA facilitates HCV replication. Cyclosporine treatment specifically blocked the incorporation of NS5B into the RC without affecting either the total protein level or the membrane association of the protein. Other nonstructural proteins or viral RNAs in the RC were not affected. NS5B from the cyclosporine-resistant replicon was resistant to this disruption of RC incorporation. We also isolated membrane fractions from both naïve and HCV-positive cells and found that CyPA is recruited into membrane fractions in HCV-replicating cells via an interaction with RC-associated NS5B, which is sensitive to cyclosporine treatment. Finally, we introduced point mutations in the prolyl-peptidyl isomerase (PPIase) motif of CyPA and demonstrated a critical role of this motif in HCV replication in cDNA rescue experiments. We propose a model in which the incorporation of the HCV polymerase into the RC depends on its interaction with a cellular chaperone protein and in which cyclosporine inhibits HCV replication by blocking this critical interaction and the PPIase activity of CyPA. Our results provide a mechanism of action for the cyclosporine-mediated inhibition of HCV and identify a critical role of CyPA''s PPIase activity in the proper assembly and function of the HCV RC.Hepatitis C virus (HCV), of the family Flaviviridae, is an enveloped, positive-stranded RNA virus. Spread mostly by blood-borne transmission, HCV infects more than 170 million people worldwide. The viral genome is composed of a single open reading frame (ORF) plus 5′- and 3′-nontranslated regions. The ORF encodes a large polyprotein that is cleaved by cellular and viral proteases into 10 viral proteins. The structural proteins, including the capsid protein (core), two glycoproteins (E1 and E2), and a small ion channel protein (p7), reside in the N-terminal half of the polyprotein. The rest of the ORF encodes six nonstructural (NS) proteins: NS2, NS3, NS4A, NS4B, NS5A, and NS5B. NS3 through NS5B assemble into a replication complex (RC) and are necessary and sufficient for HCV RNA replication in cell culture (8, 42). NS3 is a multifunctional protein with both a serine protease and an RNA helicase activity. The protease activity is responsible for cleavage at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions (5), and the helicase activity is probably required to unwind the double-stranded RNA intermediates formed during replication (38). NS4A serves as an essential cofactor for the NS3 protease and anchors the NS3 protein to intracellular membranes (25, 36, 39). NS4B induces the formation of a “membranous web” that is probably the site of HCV replication (16). It also contains a GTP-binding motif that is required for replication (17). The web is derived from the endoplasmic reticulum (ER) compartment, although proteins of early-endosome origin have also been found to locate to the web (62). NS5A is a phosphoprotein and an integral component of the viral RC. The precise function of NS5A in replication is still unknown but appears to be regulated by phosphorylation and its interaction with several cellular proteins (19, 22, 24, 51, 52, 59, 63, 67). In addition, it may be involved in the transition from replication and particle formation (4, 45, 64). NS5B is the RNA-dependent RNA polymerase that is responsible for copying the RNA genome of the virus during replication. Several cellular cofactors interact with NS5B and modulate its activity in the context of the viral RC (22, 24, 35, 69, 71).Positive-stranded RNA viruses alter the intracellular membranes of host cells to form an RC in which RNA replication occurs. Modifications include the proliferation and reorganization of certain cellular membranes (1). HCV forms an RC associated with altered cellular membranes (16, 23), and crude RCs (CRCs) that maintain the replicase activity in vitro can be isolated by membrane sedimentation or flotation techniques (2, 3, 18, 27, 37).Cyclosporine is a widely used immunosuppressive and anti-inflammatory drug for organ transplant patients. It functions by forming an inhibitory complex with cyclophilins (CyPs) that inhibits the phosphatase activity of calcineurin, which is important for T-cell activation. In recent years, cyclosporine and its derivatives have been shown to be highly effective in suppressing HCV replication in vitro (44, 49, 53, 68) and in vivo (30). The mechanism of this inhibition is independent of its immunosuppressive function and distinct from that of interferon (IFN) (44, 53, 56, 68).We recently showed that HCV infection in vitro is inhibited when CyPA, a major intracellular target of cyclosporine, is downregulated by RNA interference, and mutations in NS5B that confer cyclosporine-resistant binding to CyPA contribute to the cyclosporine resistance of the replicons harboring these mutations (56, 71). Here we report that CyPA is recruited into the HCV RC together with NS5B in HCV replicon or in HCV-infected cells. Cyclosporine disrupts the association between RC-incorporated NS5B and CyPA and results in an exclusion of the polymerase from the viral RC. We also show that the prolyl-peptidyl isomerase (PPIase) motif of CyPA is essential for HCV replication.  相似文献   

20.
Hepatitis C virus (HCV) p7 is an integral membrane protein that forms ion channels in vitro and that is crucial for the efficient assembly and release of infectious virions. Due to these properties, p7 was included in the family of viroporins that comprises proteins like influenza A virus M2 and human immunodeficiency virus type 1 (HIV-1) vpu, which alter membrane permeability and facilitate the release of infectious viruses. p7 from different HCV isolates sustains virus production with variable efficiency. Moreover, p7 determinants modulate processing at the E2/p7 and the p7/NS2 signal peptidase cleavage sites, and E2/p7 cleavage is incomplete. Consequently, it was unclear if a differential ability to sustain virus production was due to variable ion channel activity or due to alternate processing at these sites. Therefore, we developed a trans-complementation assay permitting the analysis of p7 outside of the HCV polyprotein and thus independently of processing. The rescue of p7-defective HCV genomes was accomplished by providing E2, p7, and NS2, or, in some cases, by p7 alone both in a transient complementation assay as well as in stable cell lines. In contrast, neither influenza A virus M2 nor HIV-1 vpu compensated for defective p7 in HCV morphogenesis. Thus, p7 is absolutely essential for the production of infectious HCV particles. Moreover, our data indicate that p7 can operate independently of an upstream signal sequence, and that a tyrosine residue close to the conserved dibasic motif of p7 is important for optimal virus production in the context of genotype 2a viruses. The experimental system described here should be helpful to investigate further key determinants of p7 that are essential for its structure and function in the absence of secondary effects caused by altered polyprotein processing.Hepatitis C virus (HCV) is a highly variable enveloped virus. It is the sole member of the genus Hepacivirus within the family Flaviviridae (36). Based on sequence homology, patient isolates are classified into seven genotypes and more than 100 subtypes (17, 52).The genome of HCV is a single-stranded RNA molecule of positive polarity with a size of ∼9.6 kb. It encodes a polyprotein of ca. 3,000 amino acids and contains nontranslated regions (NTRs) at both the 5′ and 3′ termini that are required for translation and RNA replication (33). Cellular and two viral proteases, NS2-3 and NS3-4A, liberate the individual viral proteins. The N-terminal portion of the polyprotein contains the structural proteins core and envelope glycoproteins 1 and 2 (E1, E2), which constitute the virus particle. These proteins are cleaved from the polyprotein by the host cell signal peptidase (18, 24). In the case of the core protein, an additional cleavage step mediated by the signal peptide peptidase liberates its mature C terminus (41). Further downstream of the structural proteins the polyprotein harbors p7, a short membrane-associated polypeptide required for virus assembly and release (27, 55), and the nonstructural (NS) proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Proteins NS3 to NS5B are the minimal components of the membrane-bound replication complexes that catalyze RNA replication (16, 38).Using the novel JFH1-based HCV infection model (35, 61, 65), it has been demonstrated recently that besides the canonical structural proteins core, E1, and E2, NS5A, p7, NS3, and NS2 also are crucial for the production of infectious HCV particles (1, 26, 27, 39, 40, 55, 57). These data highlight that HCV assembly and release is a coordinated process involving both structural and nonstructural proteins. However, how the aforementioned proteins contribute to the production of infectious virus particles remains poorly understood.HCV p7 comprises two helical domains connected by a polar loop. Studies with epitope-tagged p7 variants indicate that both termini of the protein are resident in the lumen of the endoplasmic reticulum (ER) (4) or that, in addition, a second alternative topology with the C terminus exposed to the cytoplasm can be adopted (25). Using such constructs for fluorescent microscopy, a complex localization of p7 was revealed. While most prominent staining generally was observed at the ER (4, 19, 23), pools of p7 also were detected at mitochondria (19) and at the plasma membrane (4). These data suggest that p7 influences virus replication at various sites within infected cells, and that the function and/or localization of p7 is regulated by different trafficking signals that could be exposed in a topology-dependent manner. However, caution is warranted since, due to the lack of antibodies, epitope-tagged p7 variants had to be employed for most analyses, and since localization studies of virus-producing cells with functional p7 still are lacking.One hallmark of p7 is its ability to form cation-selective channels in artificial membranes (20, 46, 49), a property that likely depends on the oligomerization of the protein (7, 21). There are intriguing correlations that link p7''s function as an ion channel protein in vitro to its role in the assembly and release of infectious HCV particles in tissue culture. First, the mutation of the conserved dibasic motif in the polar loop of p7 abrogates ion channel activity and interferes with virus production in tissue culture (20, 27, 55). Second, iminosugars coupled to long alkyl chains like N-nonyl deoxygalactonojirimycin (NN-DGJ) not only interfere with ion channel activity but also repress the release of infectious particles from transfected Huh-7 cells (46, 56). Taken together, these data suggest that the ion channel activity of p7 is crucial for its role in the late steps of the HCV replication cycle, and that this function is amenable to the development of selective inhibitors for antiviral therapy. However, presently it is unknown how mechanistically p7, as an ion channel protein, facilitates HCV assembly and release or if p7 also is a component of virus particles and participates in entry.Besides its function as an ion channel, p7 harbors a signal-like sequence in its C-terminal domain that directs the insertion of the N terminus of NS2 into the lumen of the ER (4). Strikingly, due to structural determinants within the C terminus of E2, p7, and the N terminus of NS2, signalase cleavages at the E2/p7 and the p7/NS2 sites are incomplete, thus yielding E2-p7-NS2 and E2-p7 precursor proteins (3, 18, 34, 42). Although these precursors are not absolutely essential for the production of infectious HCV particles (26, 27), a defined ratio between mature and precursor proteins might play a role to orchestrate optimal virus assembly. Given these circumstances, genetic studies of p7 function are complicated, since mutations may, on the one hand, affect ion channel activity, and on the other hand influence processing at the E2-p7 and p7-NS2 junctions.To circumvent this problem, in this study we developed a complementation system that permits the rescue of genomes with defects in p7 by the ectopic expression of p7 in trans. This enabled us to directly assess the function of p7 in the absence of secondary effects caused by aberrant polyprotein cleavage. Using this approach, we analyzed the role of the native signal sequence of p7 and p7-containing precursor proteins. In addition, we investigated key determinants that are essential for the optimal function of p7 in the course of HCV infectious particle production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号