首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Galván I  Benayas JM 《Oecologia》2011,166(2):305-316
Passive woodland regeneration following cropland abandonment and pine plantations are two major approaches for vegetation restoration in agricultural landscapes in the Mediterranean Basin. We compared the effects of these two contrasting approaches on local bird density in central Spain on the basis of species characteristics, including regional density, habitat breadth, life-history traits and plumage colouration. Local bird density increased with regional density and habitat breadth in both woodland and pine plantation plots following macroecological patterns of bird abundance and distribution. In woodlands, dichromatic species were more abundant than monochromatic species and bird density increased with the intensity of territory defense and as the proportion of plumage colour generated by pheomelanin decreased. Contrary to our prediction, this latter observation suggests that woodlands may induce higher levels of physiological stress in birds than pine plantations even though these represent a novel habitat change. In pine plantations, sedentary species were more abundant than migratory species and bird density was negatively related to body and egg mass. These traits of bird species in pine plantations are characteristic of successful invaders. The variation in bird density explained by phylogeny was twice as high in pine plantations as in woodlands, suggesting that pine plantations limit accessibility to some clades. Our results support, from an evolutionary perspective, the described inability of pine plantations on cropland to maintain or increase bird diversity in Mediterranean agricultural landscapes.  相似文献   

2.
Habitat edges are landscape structures that have a major influence on animal communities. Bird communities' response to habitat edges is influenced by the season and habitat characteristics but it is still poorly understood how communities respond to structural complex (i.e. natural) edges. Inter-seasonal changes in bird species diversity were quantified at a homogeneous, sharp interface between two habitats that host distinct and well-represented bird communities: a mature broad-leaved forest and a compact reed-bed area. Resident species diversity was found higher during winter, both in terms of species richness and evenness. The presence of the reed-bed nesting migrants during the summer season did not notably modify the seasonally reversed diversity pattern; the overall evenness was higher during the winter season while the overall species richness did not differ between the two seasons. Thus, contrary to the expected regional seasonal diversity pattern, the forest – reed-bed interface is, in winter, a local bird diversity hotspot. The possible causes and implications for conservation of this phenomenon are discussed.  相似文献   

3.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

4.
Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.  相似文献   

5.
Forest plantations of exotic conifers represent an important economic activity in NW Patagonia, Argentina. However, there is a remarkable lack of information on the impact of forestry on native biodiversity. We analyzed the effect of Pinus ponderosa plantations on bird communities, considering different stand management practices (dense and sparse tree covers), and different landscape contexts where they are planted (Austrocedrus chilensis forest and steppe). Ultimately we wished to assess in which way plantations may be designed and managed to improve biodiversity conservation. Bird richness and abundance did not change significantly in the steppe, although community composition did, and was partially replaced by a new community, similar to that of ecotonal forests. In contrast, in the A. chilensis forest areas, species richness decreased in dense plantations, but bird community composition remained relatively constant when replacing the native forest with pine plantations. Also, in A. chilensis forest, stand management practices aiming at maintaining low tree densities permit the presence of many bird species from the original habitat. In the steppe area in turn, both dense and sparse plantations are unsuitable for most steppe species, thus it is necessary to manage them at higher scales, maintaining the connectivity of the native matrix to prevent the fragmentation of bird populations. We conclude that pine plantations can provide habitat for a substantial number of native bird species, and this feature varies both with management practices and with the landscape context of areas where afforestation occurs.  相似文献   

6.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

7.
To determine use of riparian habitats by birds in the northern coniferous forest of British Columbia, we censused birds and vegetation along 500 m transects placed parallel and perpendicular to three second-order streams. Censuses were conducted during spring, summer, autumn, and winter to investigate how use of riparian habitat changed seasonally. Stream-side riparian zones were characterized by a dense understorey of deciduous vegetation not found in the upslope forest. Nine bird species preferred the riparian understorey for breeding, six preferred it only during migration. Neotropical migrants (16 of 46 species) were more closely associated with stream-sides than year-round residents (11 species). Some breeding birds (five species) were significantly negatively associated with riparian habitats. The density of riparian birds declined with distance upstream but did not decline up to 250 m away from the stream. The more extensive riparian areas downstream supported a greater density of birds in all seasons compared to upstream areas, but more species only in spring and autumn. Species that nested in non-riparian areas in summer used riparian habitat in autumn, making riparian corridors in the northern coniferous forest important during migration. Maintaining both riparian and upslope habitats is necessary to preserve species diversity al the landscape level.  相似文献   

8.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

9.
Clearance of tropical forest for agricultural purposes is generally assumed to seriously threaten the survival of forest species. In this study, we quantified the conservation value, for forest bird species, of three degraded habitat types in Peninsular Malaysia, namely rubber tree plantations, oil palm plantations, and open areas. We surveyed these degraded habitats using point counts to estimate their forest bird species richness and abundance. We assessed whether richness, abundance, and activities of different avian dietary groups (i.e. insectivores and frugivores) varied among the habitats. We identified the critical habitat elements that accounted for the distribution of forest avifauna in these degraded habitats. Our results showed that these habitats harboured a moderate fraction of forest avifauna (approximately 46–76 species) and their functions were complementary (i.e. rubber tree plantations for moving; open habitats for perching; shrubs in oil palm plantations for foraging). In terms of species richness and abundance, rubber tree plantations were more important than oil palm plantations and open habitats. The relatively high species richness of this agricultural landscape was partly due to the contiguity of our study areas with extensive forest areas. Forecasts of forest-species presence under various canopy cover scenarios suggest that leaving isolated trees among non-arboreal crops could greatly attract relatively tolerant species that require tree canopy. The conservation value of degraded habitats in agricultural landscapes seems to depend on factors such as the type of crops planted and distance to primary forest remnants.  相似文献   

10.
Traditional approaches to the study of species persistence in fragmented landscapes generally consider a binary classification of habitat being suitable or unsuitable; however, the range of human‐modified habitats within a region may offer a gradient of habitat suitability (or conservation value) for species. We identified such a gradient by comparing bird assemblages among contrasting land uses (pine plantations of different age, annual crops, clear cuts and cattle pastures) in the Upper Parana Atlantic forest. Bird assemblages and vegetation structure were characterized in an extensive area of 4400 km2 in Argentina and Paraguay during the breeding seasons of 2005–2010. Similarity of bird assemblages between anthropogenic habitats and the native forest and the proportion of forest species increased with vegetation vertical structure, while the proportion of open‐area species decreased. As a consequence, mature tree plantations were the most suitable habitats for forest species and were mainly used by frugivores and bark insectivores. In contrast, open habitats were the least suitable habitat for forest species and were used primarily by insectivores. Human‐created habitats that are structurally complex can be used by a subset of forest species, and may improve functional connectivity and mitigate edge effects. The conservation of large tracks of native forests, however, is critical for the long‐term persistence of the entire bird assemblage, especially for native forest dependent species.  相似文献   

11.
Although increased attention is being paid to animals when studying restoration processes, little is known on the effects that different restoration efforts have on birds. In this study we evaluated the variation of bird communities in a managed landscape that includes cropfields and two different restoration strategies. To evaluate possible differential effects of both restoration strategies (plus former-state and natural-state comparisons as controls), we compared their bird communities. After five growing seasons, bird species richness was highest in native forest remnants and lowest in cropfields. Although species richness values from the restoration treatment did not show differences in relation to those from the forest treatment, values for the reforestation treatment did. Bird densities were highest in the forests and alike in cropfield, reforestation, and restoration treatments. However, bird communities recorded in the restoration treatment were fairly even when compared to the reforestation treatment, and highest bird species composition similarity was recorded between the restoration and forest treatments. These results suggest that the studied restoration treatment attracts a higher number of bird species in relation to former states and thus enhance bird richness. Also, we demonstrate that restoration efforts that include more actions can affect more ecosystem components. In this study, nurse plants not only offered a quick growing structural vegetation component that enhanced habitat structure, but also provided abundant food resources for birds. Given the scarcity of comparable habitat matrices to replicate our study, our results should be taken with caution as they are not generalizable to all Mexican temperate forest conditions. Although further studies need to address whether restoration practices using Lupinus elegans positively affect bird primary population parameters (e.g., survival, reproduction), our results show that restoration practices that include nurse plants can promote rich bird communities after only 5 years from the implementation of restoration measures.  相似文献   

12.
The few remaining Afromontane forest fragments in northern Ethiopia and the surrounding degraded, semiarid matrix form a habitat mosaic of varying suitability for forest birds. To evaluate the effect of recent land rehabilitation efforts on bird community composition and diversity, we studied bird species distributions in ten small forest fragments (0.40–20.95 ha), five grazing exclosures (10-year-old forest restoration areas without wood extraction and grazing livestock) and three grazed matrix sites during the rainy season (July–October 2004) using 277 one-hour species counts. Based on the distribution pattern of 146 bird species, sites were assigned to one of three bird communities (birds of moist forest, dry forest or degraded savanna), each occupying a well-defined position along an environmental gradient reflecting decreasing vegetation structure and density. All three communities were representative of the avifauna of Afrotropical Highland open forest and woodland with a high proportion of invasive and competitive generalist species (31%). Apart from these, exclosures shared more species with forest fragments (20%) than did the grazed matrix (5%), indicating local ecosystem recovery. By increasing habitat heterogeneity, exclosures have the potential to enhance landscape connectivity for forest birds and are, therefore, an effective instrument for conserving species in a fragmented landscape. However, 52 bird species (36%) occurred exclusively within forest patches and many forest birds that use exclosures are unlikely to maintain viable populations when forest fragments disappear, particularly as forest fragments may be a critical resource during the hot dry season. This highlights the high conservation value of small isolated forest fragments for less tolerant, forest-limited and/or biome-restricted species.  相似文献   

13.
云南大中山黑颈长尾雉栖息地选择周年变化   总被引:8,自引:1,他引:7  
Li W  Zhou W  Liu Z  Li N 《动物学研究》2010,31(5):499-508
采用比较利用和可利用栖息地的方法,分别对云南大中山黑颈长尾雉秋冬季、春季和夏季栖息地展开调查。检验和Bonferroni置信区间分析结果表明,黑颈长尾雉不同季节均偏向选择常绿阔叶林,偏向选择或回避选择的乔木、灌木和草本的种类不尽相同。利用和可利用样方差异性检验显示,不同季节对地形因素的选择性不明显,仅夏季距水源距离一个因子差异显著;植被因子中,春季差异显著的仅有乔木层盖度因子,夏季有乔木密度、乔木层盖度、落叶层盖度和草本层盖度等4个因子,秋冬季有乔木层盖度、草本层盖度和藤本密度等3个因子。主成分分析表明,不同季节利用样方负荷绝对值较大的因子在各主成分中的序位不尽相同,即栖息地选择的主要生态因子随季节发生变化。单因素方差分析和逐步判别分析表明,秋冬季与春季栖息地特征较接近,而与夏季差别较大。χ2  相似文献   

14.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

15.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

16.
Agriculture intensification has drastically altered farmland mosaics, while semi-natural grasslands have been considerably reduced and fragmented. Bird declines in northern temperate latitudes are attributed to habitat loss and degradation in farmed landscapes. Conversely, landscape-modification effects on grassland/farmland bird communities are less studied in the South American temperate grasslands. We investigated how bird communities were influenced by landscape characteristics in the Rolling Pampa (Argentina). We sampled bird communities in 356 landscapes of 1-km radius that varied in cover and configuration of pastureland, flooding grassland and cropland. Using generalized linear models, we explored the relationship between both bird species richness and abundance, and landscape structure. Analyses were carried out for all species, and open-habitat, grassland and aquatic species. Pasture area was far the most important factor, followed by landscape composition, in predicting species richness and abundance, irrespective of specific habitat preferences, followed by partially-flooded grassland cover and its mean shape index. Grassland fragmentation did not affect species richness or abundance. When comparing the effects of landscape variables on bird richness and abundance (using mean model coefficients), pasture and grassland area effects were on average more than four times greater than those of compositional heterogeneity, and about ten times greater than shape effects. To conserve species-rich bird communities persisting in Rolling Pampa farmland, we recommend the preservation of pasture and grassland habitats, irrespective of their fragmentation level, in intensively managed farmland mosaics.  相似文献   

17.
Part of the abandoned cropland in Mediterranean landscapes is being subjected to afforestation dominated by pines. Here we simultaneously evaluate the effect of three categories of factors as predictors of the interspecific variation in bird habitat occupancy of fragmented afforestations, namely regional distribution, habitat preferences, and life-history traits of species. We use the “natural experiment” that highly fragmented pine plantations of central Spain represent due to the prevailing pattern of land ownership of small properties. Many species with marked habitat preferences for woodland habitats were very scarce or were never recorded in this novel habitat within a matrix of deforested agricultural landscape. Interspecific variability in occurrence was mainly explained by regional distribution patterns: occurrence was significantly and positively associated with the proportion of occupied 10 × 10 UTM km squares around the study area, habitat breadth, and population trend of species in the period 1998–2011. It was also positively associated with regional occupancy of mature and large pine plantations. Other predictor variables related to habitat preferences (for woodland, agricultural and urban habitats) or life-history traits (migratory strategy, body mass, and clutch size) were unrelated to the occurrence of species. Thus, small man-made pinewood islands funded by the Common Agrarian Policy within a landscape dominated by Mediterranean agricultural habitats only capture widespread and habitat generalist avian species with increasing population trends, not contributing to enhance truly woodland species.  相似文献   

18.
The spatial distributions of species, and the resulting composition of local communities, are shaped by a complex interplay between species’ climatic and habitat preferences. We investigated this interaction by analyzing how the climatic niches of bird species within given communities (measured as a community thermal index, CTI) are related to vegetation structure. Using 3129 bird communities from the French Breeding Bird Survey and an information theoretic multimodel inference framework, we assessed patterns of CTI variation along landscape scale gradients of forest cover and configuration. We then tested whether the CTI varies along local scale gradients of forest structure and composition using a detailed data set of 659 communities from six forests located in northwestern France. At landscape scale, CTI values decreased with increasing forest cover, indicating that bird communities were increasingly dominated by cold‐dwelling species. This tendency was strongest at low latitudes and in landscapes dominated by unfragmented forest. At local scale, CTI values were higher in mature deciduous stands than in conifer or early stage deciduous stands, and they decreased consistently with distance from the edge of forest. These trends underpin the assertion that species’ habitat use along forest gradients is linked with their climatic niche, although it remains unclear to what extent it is a direct consequence of microclimatic variation among habitats, or a reflection of macroscale correlations between species’ thermal preferences and their habitat choice. Moreover, our results highlight the need to address issues of scale in determining how habitat and climate interact to drive the spatial distribution of species. This will be a crucial step towards accurate predictions of changes in the composition and dynamics of bird communities under global warming.  相似文献   

19.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

20.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation.Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats.In this paper,the relationships between richness,assemblage,and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou,China.Field investigations of bird communities,using the line transect method,were conducted from January to December,1997.Each woodlot was surveyed 16 times during the year.Results indicated that bird richness was higher,per unit area,in the smaller woodlots than the larger ones,and overall bird density decreased with the increase in the size of woodlot.However,the evenness of species abundance increased with the area,and small woodlots were usually dominated by higher density species and large woodlots by medium density species.Most species occurring in the small woodlots also occurred in larger woodlots.Also,bird communities among urban woodlots showed a nestedness pattern in assemblage.These patterns implied that the main impacts of woodland habitat fragmentation are:(1) species are constricted and thus species number will increase at a given sample size;(2) as surface area decreases,the proportion of forest edge species as to interior species will increase;(3)community abundance will therefore increase per unit area but most individuals will be from a few dominant species;and (4) overall species diversity will decrease at a habitat level as well as at a region level.These patterns of community in response to the island features were therefore summarized as "island effects in community".The underlying processes of such observations were also examined in this paper.Woodlot area,edge ratio,isolation,and habitat nestedness were considered as the important factors forming the island effects in community.High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity,especially in urban woodlots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号